Maternal deprivation in rats specifically leads to a vulnerability to opiate dependence. However, the impact of cannabis exposure during adolescence on this opiate vulnerability has not been investigated. Chronic dronabinol (natural delta-9 tetrahydrocannabinol, THC) exposure during postnatal days 35–49 was made in maternal deprived (D) or non-deprived (animal facility rearing, AFR) rats. The effects of dronabinol exposure were studied after 2 weeks of washout on the rewarding effects of morphine measured in the place preference and oral self-administration tests. The preproenkephalin (PPE) mRNA levels and the relative density and functionality of CB1, and m-opioid receptors were quantified in the striatum and the mesencephalon. Chronic dronabinol exposure in AFR rats induced an increase in sensitivity to morphine conditioning in the place preference paradigm together with a decrease of PPE mRNA levels in the nucleus accumbens and the caudate–putamen nucleus, without any modification for preference to oral morphine consumption. In contrast, dronabinol treatment on D-rats normalized PPE decrease in the striatum, morphine consumption, and suppressed sensitivity to morphine conditioning. CB1 and m-opioid receptor density and functionality were not changed in the striatum and mesencephalon of all groups of rats. These results indicate THC potency to act as a homeostatic modifier that would worsen the reward effects of morphine on naive animals, but ameliorate the deficits in maternally D-rats. These findings point to the self-medication use of cannabis in subgroups of individuals subjected to adverse postnatal environment. Neuropsychopharmacology (2009) 34, 2469–2476; doi:10.103