Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Anandamide (AEA), Endocannabinoid/s
Loading...

Endocannabinoid Anandamide Mediates the Effect of Skeletal Muscle Sphingomyelins on Human Energy Expenditure

Abstract   Context: Skeletal muscle endocannabinoids and sphingolipids (particularly sphingomyelins) are inversely associated with sleeping energy expenditure (SLEEP) in humans. The endocannabinoid system may increase sphingolipid synthesis via cannabinoid receptor-1.   Objective: To investigate in human skeletal muscle whether endocannabinoids are responsible for the effect of sphingomyelins on SLEEP.   Design: Muscle endocannabinoid [anandamide (AEA), 2-arachidonoylglycerol (2-AG)], endocannabinoid congeners [oleoylethanolamide (OEA), palmitoylethanolamide (PEA)], and sphingomyelin content were measured with liquid chromatography/mass spectrometry. SLEEP was assessed in a whole-room indirect calorimeter. Mediation analyses tested whether the inverse associations between sphingomyelins and SLEEP depended on endocannabinoids and endocannabinoid-related OEA and PEA.   Setting: Inpatient study.   Participants: Fifty-three Native Americans who...
Read More

Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis

Abstract Neutrophil influx into the intestinal lumen is a critical response to infectious agents, but is also associated with severe intestinal damage observed in idiopathic inflammatory bowel disease. The chemoattractant hepoxilin A3, an eicosanoid secreted from intestinal epithelial cells by the apically restricted efflux pump multidrug resistance protein 2 (MRP2), mediates this neutrophil influx. Information about a possible counterbalance pathway that could signal the lack of or resolution of an apical inflammatory signal, however, has yet to be described. We now report a system with such hallmarks. Specifically, we identify endocannabinoids as the first known endogenous substrates of the apically restricted multidrug resistance transporter...
Read More

The Endocannabinoid-CB Receptor System: Importance for development and in pediatric disease

Abstract Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of "atypically" distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor ('ECBR') system...
Read More

Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: Additional evidence

Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to...
Read More

An endogenous cannabinoid (2-AG) is neuroprotective after brain injury

Traumatic brain injury triggers the accumulation of harmful mediators that may lead to secondary damage1,2. Protective mechanisms to attenuate damage are also set in motion2 . 2- Arachidonoyl glycerol (2-AG) is an endogenous cannabinoid, identified both in the periphery and in the brain, but its physiological roles have been only partially clarified. Here we show that, after injury to the mouse brain, 2-AG may have a neuroprotective role in which the cannabinoid system is involved. After closed head injury (CHI) in mice, the level of endogenous 2- AG was significantly elevated. We administered synthetic 2-AG to mice after CHI and found signi®cant reduction of...
Read More

An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity

2-Arachidonoyl-glycerol 2-Ara-Gl has been isolated from various tissues and identified as an endogenous ligand for both cannabinoid receptors, CB and CB . Here we report that in spleen, as in brain and gut, 2-Ara-Gl is accompanied by several 1 2 2-acyl-glycerol esters, two major ones being 2-linoleoyl-glycerol 2-Lino-Gl and 2-palmitoyl-glycerol 2-Palm-Gl . These two esters do not bind to the cannabinoid receptors, nor do they inhibit adenylyl cyclase via either CB or CB ; however, they significantly potentiate 1 2 the apparent binding of 2-Ara-Gl and its apparent capacity to inhibit adenylyl cyclase. Together these esters also significantly potentiate 2-Ara-Gl inhibition of motor behavior,...
Read More

An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

Abstract In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose...
Read More

Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome

Abstract Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders. We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well...
Read More

Anandamide Induces Apoptosis in Human Cells via Vanilloid Receptors

The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The...
Read More

Antiangiogenic Activity of the Endocannabinoid Anandamide: Correlation to its Tumor-Suppressor Efficacy

Endocannabinoids are now emerging as suppressors of key cell-signaling pathways involved in cancer cell growth, invasion, and metastasis. We have previously observed that the metabolically stable anandamide analog, 2-methyl-2'-F-anandamide (Met-F-AEA) can inhibit the growth of thyroid cancer in vivo. Our hypothesis was that the anti-tumor effect observed could be at least in part ascribed to inhibition of neo-angiogenesis. Therefore, the aim of this study was to assess the anti-angiogenic activity of Met-F-AEA, to investigate the molecular mechanisms underlying this effect and whether Met-F-AEA could antagonize tumor-induced endothelial cell sprouting. We show that Met-F-AEA inhibited bFGF-stimulated endothelial cell proliferation, in a dose-dependent manner, and also...
Read More
« Previous 1 2 3 4 5 6 … 11 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.