Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Cannabinoid/s, cartilage, WIN55212-2
Loading...

Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1b induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes

Objective: Interleukin-1b (IL-1b) is involved in the up-regulation of matrix metalloproteinases (MMPs) leading to cartilage degradation. Cannabinoids are anti-inflammatory and reduce joint damage in animal models of arthritis. This study aimed to determine a mechanism whereby the synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) may inhibit cartilage degradation. Methods: Effects of WIN-55 were studied on IL-1b stimulated production of MMP-3 and -13 and their inhibitors TIMP-1 and -2 in human chondrocytes. Chondrocytes were obtained from articular cartilage of patients undergoing total knee replacement. Chondrocytes were grown in monolayer and 3D alginate bead cultures. Real-time polymerase chain reaction (PCR) was used to determine the gene expression of...
Read More

Cannabinoid-associated cell death mechanisms in tumor models

In recent years, cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the interplay...
Read More

Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression

Abstract Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma. Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well...
Read More

Cannabinoid–Dopamine Interaction in the Pathophysiology and Treatment of CNS Disorders

Endocannabinoids and their receptors, mainly the CB1 receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB1 receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate-putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA-related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid-derived cannabinoids may...
Read More

Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro

BACKGROUND AND PURPOSE Both CB1 and CB2 cannabinoid receptors have been shown to play a role in bone metabolism. Crucially, previous studies have focussed on the effects of cannabinoid ligands in murine bone cells. This study aimed to investigate the effects of cannabinoids on human bone cells in vitro. EXPERIMENTAL APPROACH Quantitative RT-PCR was used to determine expression of cannabinoid receptors and liquid chromatography-electrospray ionization tandem mass spectrometry was used to determine the presence of endocannabinoids in human bone cells. The effect of cannabinoids on human osteoclast formation, polarization and resorption was determined by assessing the number of cells expressing avb3 or with F-actin...
Read More

Cannabinoids and Cancer

Marijuana has been used in medicine for millennia, but it was not until 1964 that D9- tetrahydrocannabinol (D 9 -THC), its major psychoactive component, was isolated in pure form and its structure was elucidated. Shortly thereafter it was synthesized and became readily available. However, it took another decade until the first report on its antineoplastic activity appeared. In 1975, Munson discovered that cannabinoids suppress Lewis lung carcinoma cell growth. The mechanism of this action was shown to be inhibition of DNA synthesis. Antiproliferative action on some other cancer cells was also found. In spite of the promising results from these early studies, further investigations...
Read More

Cannabinoids and cancer: pros and cons of an antitumour strategy

Abstract In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called ‘endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiproliferative actions of cannabinoid agonists on several tumour cells in vitro and in animal models. In this article, we will review the principal molecular pathways modulated by cannabinoids on cancer and summarize pros and cons evidence on the possible future use of endocannabinoid-based...
Read More

Cannabinoids and ceramide: Two lipids acting hand-by-hand

Cannabinoids, the active components of Cannabis sativa (marijuana) and their endogenous counterparts, exert their effects by binding to specific G-protein-coupled receptors that modulate adenylyl cyclase and ion channels. Recent research has shown that the CB1 cannabinoid receptor is also coupled to the generation of the lipid second messenger ceramide via two different pathways: sphingomyelin hydrolysis and ceramide synthesis de novo. Sustained ceramide accumulation in tumor cells mediates cannabinoid-induced apoptosis, as evidenced by in vitro and in vivo studies. This effect seems to be due to the impact of ceramide on key cell signalling systems such as the extracellular signal-regulated kinase cascade and the Akt...
Read More

Cannabinoids and Cystic Fibrosis: A Novel Approach to Etiology and Therapy

Cannabis stimulates appetite and food intake. This property has been exploited to benefit AIDS and cancer patients suffering from wasting disease, by administering the whole plant or its major active ingredient ∆9-tetrahydrocannabinol (THC). Endogenous cannabinoids (“endocannabinoids”) are found in maternal milk. We have recently shown that endocannabinoids are critical for milk ingestion and survival of newborns because blocking CB1 receptors resulted in death from malnutrition. Lack of appetite resulting in malnutrition is a contributing factor to mortality in many Cystic Fibrosis (CF) patients. It is proposed here for the first time, to administer THC to CF patients. It is hoped that the cannabinoid will...
Read More

Cannabinoids and glaucoma

Glaucoma is one of the leading causes of blindness in the world. In spite of the diverse therapeutic possibilities, new and better treatments for glaucoma are highly desirable. Cannabinoids effectively lower the intraocular pressure (IOP) and have neuroprotective actions. Thus, they could potentially be useful in the treatment of glaucoma. The purpose of this article is to provide the reader with an overview of the latest achievements in research into the potential use of cannabinoids for glaucoma.
Read More
« Previous 1 … 35 36 37 38 39 … 52 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2025 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.