Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
  • Donate
  • Register
  • Login
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
  • Donate
  • Register
  • Login
  • Anti‐Inflammation, Antioxidant, antiviral, cannabidiol, Cannabidiol (CBD), CBD, coronavirus, covid, THC
Loading...

Opportunities, Challenges and Pitfalls of Using Cannabidiol as an Adjuvant Drug in COVID-19

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to coronavirus disease 2019 (COVID-19) which, in turn, may be associated with multiple organ dysfunction. In this review, we present advantages and disadvantages of cannabidiol (CBD), a non-intoxicating phytocannabinoid from the cannabis plant, as a potential agent for the treatment of COVID-19. CBD has been shown to downregulate proteins responsible for viral entry and to inhibit SARS-CoV-2 replication. Preclinical studies have demonstrated its effectiveness against diseases of the respiratory system as well as its cardioprotective, nephroprotective, hepatoprotective, neuroprotective and anti-convulsant properties, that is, effects that may be beneficial for COVID-19. Only the latter...
Read More

Medical Cannabis for Gilles de la Tourette Syndrome: An Open-Label Prospective Study

Abstract Objectives. Assessing the effectiveness and tolerability of medical cannabis (MC) treatment on Gilles de la Tourette syndrome (GTS) patients. Methods. We report on an open-label, prospective study on the effect of MC on adult GTS patients. MC mode of use was decided by the treating neurologist and the patient. Δ9-Tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) content within MC product and monthly dose were titrated during the study. Following treatment initiation, patients were assessed after 4 and 12 weeks for efficacy, tolerability, and side effects. Results. Eighteen patients entered the study. Baseline Yale Global Tic Severity Scale- (YGTSS) Total (range 0-100) was . Three patients...
Read More

Antibacterial activity of Δ9-­tetrahydrocannabinol and cannabidiol

The minimum inhibiting concentrations (MIC) of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for staphylococci and streptococci in broth are in the range of 1–5 μg/ml. In the same range, both compounds are also bactericidal. In media containing 4% serum or 5% blood the antibacterial activity is strongly reduced (MIC 50μg/ml). Gram-negative bacteria are resistant to THC and CBD.
Read More

Antitumor Activity of Plant Cannabinoids with Emphasis on the Effect of Cannabidiol on Human Breast Carcinoma

D9 -Tetrahydrocannabinol (THC) exhibits antitumor effects on various cancer cell types, but its use in chemotherapy is limited by its psychotropic activity. We investigated the antitumor activities of other plant cannabinoids, i.e., cannabidiol, cannabigerol, cannabichromene, cannabidiol acid and THC acid, and assessed whether there is any advantage in using Cannabis extracts (enriched in either cannabidiol or THC) over pure cannabinoids. Results obtained in a panel of tumor cell lines clearly indicate that, of the five natural compounds tested, cannabidiol is the most potent inhibitor of cancer cell growth (IC50 between 6.0 and 10.6 M), with significantly lower potency in noncancer cells. The cannabidiol-rich extract...
Read More

Cannabidiol (CBD) Priming Enhances Cisplatin Killing Of Cancer Cells

Cisplatin is a commonly used treatment for cancer. Cannabidiol (CBD) is a phytocannabinoid that has been shown to have beneficial properties in inflammation, pain relief and neuroprotection and can induce cell death in tumour cell lines including breast and prostate cancer. Recent data suggests that pre-treating tumour cells with a “priming agent” prior to the chemotherapeutic agent can enhance the efficacy of standard therapies. Bioactive plant compounds, such as curcumin and quercetin, have been shown to have this property. The aim of the study was to determine if CBD has a role as a priming agent.
Read More

Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants

The neuroprotective actions of cannabidiol and other cannabinoids were examined in rat cortical neuron cultures exposed to toxic levels of the excitatory neurotransmitter glutamate. Glutamate toxicity was reduced by both cannabidiol, a nonpsychoactive constituent of marijuana, and the psychotropic cannabinoid (2)D9 tetrahydrocannabinol(THC). Cannabinoids protected equally well against neurotoxicity mediated by N-methyl-D-aspartate receptors, 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid receptors, or kainate receptors. N-methyl-D-aspartate receptorinduced toxicity has been shown to be calcium dependent; this study demonstrates that 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acidykainate receptor-type neurotoxicity is also calcium-dependent, partly mediated by voltage sensitive calcium channels. The neuroprotection observed with cannabidiol and THC was unaffected by cannabinoid receptor antagonist, indicating it to be cannabinoid...
Read More

Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01–100 M) effects were assessed in vitro using the Mg2-free and 4-aminopyridine (4-AP) models of epileptiform activity in hippocampal brain slices via multielectrode array recordings. In the Mg2-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude [in CA1 and dentate gyrus (DG) regions] and burst duration (in all regions) and...
Read More

Cannabidiol Enhances the Inhibitory Effects of Δ9-Tetrahydrocannabinol on Human Glioblastoma Cell Proliferation and Survival

The cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonist Δ9 -tetrahydrocannabinol (THC) has been shown to be a broad-range inhibitor of cancer in culture and in vivo, and is currently being used in a clinical trial for the treatment of glioblastoma. It has been suggested that other plant-derived cannabinoids, which do not interact efficiently with CB1 and CB2 receptors, can modulate the actions of Δ9 -THC. There are conflicting reports, however, as to what extent other cannabinoids can modulate Δ9 -THC activity, and most importantly, it is not clear whether other cannabinoid compounds can either potentiate or inhibit the actions of Δ9 -THC....
Read More

Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes

The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachisebocytesdonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the...
Read More

Cannabinoids for pediatric epilepsy? Up in smoke or real science?

Public interest in the use of “medical marijuana” for the treatment of childhood epilepsy has burgeoned in the last few years. This has occurred in parallel with a growing interest in “medical marijuana” in general. Physicians and pediatricians must balance their patients’ desire for immediate access to these products with the tenets of evidence-based medicine. This review discusses the biochemistry of cannabis products (the phytocannabinoids) setting this in the context of the endogenous endocannabinoid system. The differing and potentially modulating effects of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are reviewed. The evidence-base supporting or not the use of cannabis products for the treatment of neurological...
Read More
1 2 Next »

REGISTER WITH THE RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • 5040 Corporate Plaza Drive, Suite 7R, Colorado Springs, CO 80919
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2023 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer