• 719-347-5400
  • info@realmofcaring.org
  • 719-347-5400
  • info@realmofcaring.org
  • Home
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Blog
      • Blog: Client Stories
      • Blog: Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
    • Aspen Green Giveaway
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
Menu
  • Home
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Blog
      • Blog: Client Stories
      • Blog: Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
    • Aspen Green Giveaway
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
  • Donate
  • Register
  • Login
  • Home
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Blog
      • Blog: Client Stories
      • Blog: Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
    • Aspen Green Giveaway
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
Menu
  • Home
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Blog
      • Blog: Client Stories
      • Blog: Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
    • Aspen Green Giveaway
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
  • Donate
  • Login
  • androgen, apoptosis, Cannabinoid, prostate, ROS, TRP channel
Loading...

Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms

BACKGROUND AND PURPOSE Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than D9 -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. EXPERIMENTAL APPROACH We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size...
Read More

Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas

To evaluate, through a systematic review of the literature, the antitumoral effects of cannabinoids on gliomas. Research included the following electronic databases: PUBMED, EMBASE, LILACS and The Cochrane Collaboration Controlled Trials Register. All published studies involving the antitumoral effects (cellular and molecular mechanisms) of cannabinoids were considered for this review. The bibliography search strategy included all publications of each of these databases until December 31, 2012. From 2,260 initially identified articles, 35 fulfilled the inclusion criteria for this review. All the studies included in this systematic review were experimental (in vivo and/or in vitro), except for one pilot clinical trial phase I/II involving humans....
Read More

Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it’s role in metabolic defects and neuronal apoptosis after TBI

Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after...
Read More

The cannabinoid D9 -tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells

Deregulation of cell survival pathways and resistance to apoptosis are widely accepted to be fundamental aspects of tumorigenesis. As in many tumours, the aberrant growth and survival of colorectal tumour cells is dependent upon a small number of highly activated signalling pathways, the inhibition of which elicits potent growth inhibitory or apoptotic responses in tumour cells. Accordingly, there is considerable interest in therapeutics that can modulate survival signalling pathways and target cancer cells for death. There is emerging evidence that cannabinoids, especially D9 -tetrahydrocannabinol (THC), may represent novel anticancer agents, due to their ability to regulate signalling pathways critical for cell growth and survival....
Read More

Anandamide Induces Apoptosis in Human Cells via Vanilloid Receptors

The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The...
Read More

The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway

Δ9 -Tetrahydrocannabinol and other cannabinoids exert pro-apoptotic actions in tumor cells via the CB2 cannabinoid receptor. However, the molecular mechanism involved in this effect has remained elusive. Here we used the human leukemia cell line Jurkat—that expresses CB2 as the unique CB receptor—to investigate this mechanism. Our results show that incubation with the selective CB2 antagonist SR144528 abrogated the pro-apoptotic effect of Δ9 -tetrahydrocannabinol. Cannabinoid treatment led to a CB2 receptor-dependent stimulation of ceramide biosynthesis and inhibition of this pathway prevented Δ9 - tetrahydrocannabinol-induced mitochondrial hypopolarization and cytochrome c release, indicating that ceramide acts at a pre-mitochondrial level. Inhibition of ceramide synthesis de novo...
Read More

Anticancer mechanisms of cannabinoids

In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed...
Read More

The endocannabinoid system and cancer: therapeutic implication

The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, D9 -tetrahydrocannabinol (D9 -THC), produces its effects through activation of CB1 and CB2 receptors. CB1 receptors are expressed at high levels in the central nervous system (CNS), whereas CB2 receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid...
Read More

Cannabinoid Receptor Agonist as an Alternative Drug in 5-Fluorouracil-resistant Gastric Cancer Cells

Fluorouracil is the main chemotherapeutic drug used for gastrointestinal cancers, which suffers the important problem of treatment resistance. There is little information whether cannabinoid agonists can be used as an alternative drug for fluorouracil-resistant gastric cancer cells. In this study, we investigated the effects of a cannabinoid agonist, WIN-55,212-2, on 5-fluorouracil (5-FU)-resistant human gastric cancer cells, to examine whether the cannabinoid agonist may be an alternative therapy. Survival of the 5-FUresistant gastric cancer cell line, SNU-620-5FU/1000, was not significantly reduced even by a high dose of 5-FU treatment. However, WIN-55,212-2 inhibited the proliferation of SNU-620-5FU/1000 and enhanced their apoptosis, as indicated by an increase...
Read More

The use of cannabinoids as anticancer agents

It is well-established that cannabinoids exert palliative effects on some cancer-associated symptoms. In addition evidences obtained during the last fifteen years support that these compounds can reduce tumor growth in animal models of cancer. Cannabinoids have been shown to activate an ER-stress related pathway that leads to the stimulation of autophagy-mediated cancer cell death. In addition, cannabinoids inhibit tumor angiogenesis and decrease cancer cell migration. The mechanisms of resistance to cannabinoid anticancer action as well as the possible strategies to develop cannabinoid-based combinational therapies to fight cancer have also started to be explored. In this review we will summarize these observations (that have already...
Read More
1 2 3 Next »

REGISTER WITH THE RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • 5040 Corporate Plaza Drive, Suite 7R, Colorado Springs, CO 80919
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2021 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer