Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Anandamide (AEA), Cannabis, Endocannabinoid/s, food intake, obesity, SR141716A
Loading...

Endogenous cannabinoid system as a modulator of food intake

The ability of Cannabis sativa (marijuana) to increase hunger has been noticed for centuries, although intensive research on its molecular mode of action started only after the characterization of its main psychoactive component D9 -tetrahydrocannabinol in the late 1960s. Despite the public concern related to the abuse of marijuana and its derivatives, scientific studies have pointed to the therapeutic potentials of cannabinoid compounds and have highlighted their ability to stimulate appetite, especially for sweet and palatable food. Later, the discovery of specific receptors and their endogenous ligands (endocannabinoids) suggested the existence of an endogenous cannabinoid system, providing a physiological basis for biological effects induced...
Read More

Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol

Background and purpose: The endocannabinoids, N-arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG) are rapidly degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Whilst these lipid mediators are known to modulate vascular tone, the extent to which they are inactivated via local metabolism in the vasculature remains unclear. Experimental approach: In rat isolated small mesenteric arteries, the regulatory role of FAAH, MGL and cyclooxygenase (COX) in relaxant responses to anandamide and 2-AG was evaluated by using inhibitors of these enzymes. Relaxations to nonhydrolysable analogues of endocannabinoids and arachidonic acid were also examined. Key results: Relaxation to anandamide but not 2-AG was potentiated by the...
Read More

Fatty Acid Binding Proteins (FABPs) are Intracellular Carriers for ∆9 -Tetrahydrocannabinol (THC) and Cannabidiol (CBD)

Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. While it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, intracellular carrier have not been identified. Recent reports suggest that CBD and THC elevates the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement...
Read More

Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors

In this study, we report the isolation from canine intestines of 2-arachidonyl glycerol (2-Ara-Gl). Its structure was determined by mass spectrometry and by direct comparison with a synthetic sample. 2-Ara-Gl bound to membranes from cells transiently transfected with expression plasmids carrying DNA of either CB1 or CB2--the two cannabinoid receptors identified thus far--with Ki values of 472 +/- 55 and 1400 +/- 172 nM, respectively. In the presence of forskolin, 2-Ara-Gl inhibited adenylate cyclase in isolated mouse spleen cells, at the potency level of delta 9-tetrahydrocannabinol (delta 9-THC). Upon intravenous administration to mice, 2-Ara-Gl caused the typical tetrad of effects produced by THC: antinociception,...
Read More

Intrahippocampal administration of anandamide increases REM sleep

A nascent literature has postulated endocannabinoids (eCBs) as strong sleep-inducing lipids, particularly rapid-eye-movement sleep (REMs), nevertheless the exact mechanisms behind this effect remain to be determined. Anandamide and 2-arachidonyl glycerol, two of the most important eCBS, are synthesized in the hippocampus. This structure also expresses a high concentration of cannabinoid receptor 1 (CB1). Recent extensive literature supports eCBs as important regulators of hippocampal activity. It has also been shown that these molecules vary their expression on the hippocampus depending on the light–dark cycle. In this context we decided to analyze the effect of intrahippocampal administration of the eCB anandamide (ANA) on the sleep–waking cycle...
Read More

Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation

Although adverse effects of cannabinoids on pregnancy have been indicated for many years, the mechanisms by which they exert their actions were not clearly understood. Only recently, molecular and biochemical approaches have led to the identification of two types of cannabinoid receptors, brain-type receptors (CB1-R) and spleen-type receptors (CB2-R), which mediate cannabinoid effects. These findings were followed by the discovery of endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG). The natural cannabinoids and endocannabinoids exert their effects via cannabinoid receptors and share similar pharmacological and physiological properties. Recent demonstration of expression of functional CB1-R in the preimplantation embryo and synthesis of anandamide in the pregnant uterus of...
Read More

Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound D9 -tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential...
Read More

Neuroprotection by D9 -Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that 9 -tetrahydrocannabinol (9 -THC), the main active compound in marijuana, reduces neuronal injury in neonatal rats injected intracerebrally with the Na /K -ATPase inhibitor ouabain to elicit excitotoxicity. In the acute phase 9 -THC reduced the volume of cytotoxic edema by 22%. After 7 d, 36% less neuronal damage was observed in treated rats compared with control animals. Coadministration of the CB1 cannabinoid receptor antagonist SR141716 prevented the neuroprotective actions of 9...
Read More

Oxyradical Stress, Endocannabinoids, and Atherosclerosis

Atherosclerosis is responsible for most cardiovascular disease (CVD) and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox) produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS) have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB) is also important in...
Read More

Plant cannabinoids: a neglected pharmacological treasure trove

Abstract Most of the cannabinoids in Cannabis sativa L. have not been fully evaluated for their pharmacological activity. A publication in this issue presents evidence that a plant cannabinoid, Δ9-tetrahydrocannabivarin is a potent antagonist of anandamide, a major endogenous cannabinoid. It seems possible that many of the non-psychoactive constituents of this plant will be of biological interest.
Read More
« Previous 1 2 3 4 5 … 7 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.