Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • ∆9-tetrahydrocannabinol (THC), cataleptic activity, oral administration
Loading...

Activity of cannabis in relation to its delta’-trans-tetrahydro-cannabinol content

Conditions have been worked out for a reliable estimation of the cataleptic activity of delta'-trans-tetrahydrocannabinol (THC) after oral administration to mice, using the ring test over a period of 6 h. By this method, the activity of cannabis herb and 5 crude fractions were measured against THC; at the same time the THC contents were determined chemically. The B/C ratio (biological activity divided by chemical assay) was calculated for each. With cannabis herb the value was 3.3 and with extracts prepared with ethanol or 70% ethanol the values ranged from 3.2 to 7.1, indicating that in all samples the activity was much higher than...
Read More

Adolescent Exposure to Chronic Delta-9-Tetrahydrocannabinol Blocks Opiate Dependence in Maternally Deprived Rats

Maternal deprivation in rats specifically leads to a vulnerability to opiate dependence. However, the impact of cannabis exposure during adolescence on this opiate vulnerability has not been investigated. Chronic dronabinol (natural delta-9 tetrahydrocannabinol, THC) exposure during postnatal days 35–49 was made in maternal deprived (D) or non-deprived (animal facility rearing, AFR) rats. The effects of dronabinol exposure were studied after 2 weeks of washout on the rewarding effects of morphine measured in the place preference and oral self-administration tests. The preproenkephalin (PPE) mRNA levels and the relative density and functionality of CB1, and m-opioid receptors were quantified in the striatum and the mesencephalon. Chronic...
Read More

Agonistic Properties of Cannabidiol at 5-HT1a Receptors

Cannabidiol (CBD) is a major, biologically active, but psycho-inactive component of cannabis. In this cell culture-based report, CBD is shown to displace the agonist, [3H]8-OHDPAT from the cloned human 5-HT1a receptor in a concentration-dependent manner. In contrast, the major psychoactive component of cannabis, tetrahydrocannabinol (THC) does not displace agonist from the receptor in the same micromolar concentration range. In signal transduction studies, CBD acts as an agonist at the human 5-HT1a receptor as demonstrated in two related approaches. First, CBD increases [35S]GTPcS binding in this G protein coupled receptor system, as does the known agonist serotonin. Second, in this GPCR system, that is negatively...
Read More

Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid

Effective treatment for amyotrophic lateral sclerosis (ALS) remains elusive. Two of the primary hypotheses underlying motor neuron vulnerability are susceptibility to excitotoxicity and oxidative damage. There is rapidly emerging evidence that the cannabinoid receptor system has the potential to reduce both excitotoxic and oxidative cell damage. Here we report that treatment with Delta(9)-tetrahydrocannabinol (Delta(9)-THC) was effective if administered either before or after onset of signs in the ALS mouse model (hSOD(G93A) transgenic mice). Administration at the onset of tremors delayed motor impairment and prolonged survival in Delta(9)-THC treated mice when compared to vehicle controls. In addition, we present an improved method for the analysis...
Read More

Antibacterial activity of Δ9-­tetrahydrocannabinol and cannabidiol

The minimum inhibiting concentrations (MIC) of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for staphylococci and streptococci in broth are in the range of 1–5 μg/ml. In the same range, both compounds are also bactericidal. In media containing 4% serum or 5% blood the antibacterial activity is strongly reduced (MIC 50μg/ml). Gram-negative bacteria are resistant to THC and CBD.
Read More

Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L

The antidepressant action of cannabis as well as the interaction between antidepressants and the endocannabinoid system has been reported. This study was conducted to assess the antidepressantlike activity of Δ 9 -THC and other cannabinoids. Cannabinoids were initially evaluated in the mouse tetrad assay to determine doses that do not induce hypothermia or catalepsy. The automated mouse forced swim (FST) and tail suspension (TST) tests were used to determine antidepressant action. At doses lacking hypothermic and cataleptic effects (1.25, 2.5, and 5 mg/kg, i.p.), both Δ 9 -THC and Δ 8 -THC showed a U-shaped dose response with only Δ 9 -THC showing significant...
Read More

Around‐the‐Clock Oral THC Effects on Sleep in Male Chronic Daily Cannabis Smokers

Background and Objectives: D9‐tetrahydrocannabinol (THC) promotes sleep in animals; clinical use of THC is associated with somnolence. Human laboratory studies of oral THC have not shown consistent effects on sleep. We prospectively evaluated self‐reported sleep parameters during controlled oral THC administration to research volunteers. Methods: Thirteen male chronic daily cannabis smokers (mean SD age 24.6 +/- 3.7 years, self‐reported smoking frequency of 5.5 +/- 5.9 (range 1–24) joint‐equivalents daily at study entry) were administered oral THC doses (20 mg) around‐the‐clock for 7 days (40–120 mg daily) starting the afternoon after admission. The St. Mary’s Hospital Sleep Questionnaire was completed every morning. Plasma THC and...
Read More

Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ9-Tetrahydrocannabinolic Acid A

Abstract Δ9-tetrahydrocannabinolic acid A (THCA-A) is the acidic precursor of Δ9-tetrahydrocannabinol (THC), the main psychoactive compound found in Cannabis sativa. THCA-A is biosynthesized and accumulated in glandular trichomes present on flowers and leaves, where it serves protective functions and can represent up to 90% of the total THC contained in the plant. THCA-A slowly decarboxylates to form THC during storage and fermentation and can further degrade to cannabinol. Decarboxylation also occurs rapidly during baking of edibles, smoking, or vaporizing, the most common ways in which the general population consumes Cannabis. Contrary to THC, THCA-A does not elicit psychoactive effects in humans and, perhaps for this...
Read More

Cannabidiol (CBD) and its analogs: a review of their effects on inflammation

First isolated from Cannabis in 1940 by Roger Adams, the structure of CBD was not completely elucidated until 1963. Subsequent studies resulted in the pronouncement that THC was the ‘active’ principle of Cannabis and research then focused primarily on it to the virtual exclusion of CBD. This was no doubt due to the belief that activity meant psychoactivity that was shown by THC and not by CBD. In retrospect this must be seen as unfortunate since a number of actions of CBD with potential therapeutic benefit were downplayed for many years. In this review, attention will be focused on the effects of CBD in...
Read More

Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells

Cannabidiol (CBD) has been shown to exhibit anti-inflammatory, antioxidant and neuroprotective properties. Unlike D9-tetrahydrocannabinol (THC), CBD is devoid of psychotropic effects and has very low affinity for both cannabinoid receptors, CB1 and CB2. We have previously reported that CBD and THC have different effects on anti-inflammatory pathways in lipopolysaccharide-stimulated BV-2 microglial cells, in a CB1/CB2 independent manner. Moreover, CBD treatment of BV-2 cells, was found to induce a robust change in the expression of genes related to oxidative stress, glutathione deprivation and inflammation. Many of these genes were shown to be controlled by Nrf2 and ATF4 transcription factors. Using the Illumina MouseRef-8 BeadChip platform,...
Read More
« Previous 1 … 88 89 90 91 92 … 104 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2025 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.