Abstract
Introduction: There is widespread acceptance of cannabis for medical or recreational use across the society, including pregnant women. Concerningly, numerous studies find that the developing central nervous system (CNS) is vulnerable to the detrimental effects of Δ9-tetrahydrocannabinol (THC). In contrast, almost nothing on the consequences of perinatal cannabidiol (CBD) exposure. In this study, we used mice to investigate the adult impact of perinatal cannabinoid exposure (PCE) with THC, CBD, or a 1:1 ratio of THC and CBD on behaviors. Furthermore, the lasting impact of PCE on fluoxetine sensitivity in the forced swim test (FST) was evaluated to probe neurochemical pathways interacting with the endocannabinoid system (ECS).
Methods: Pregnant CD1 dams were injected subcutaneously daily with vehicle, 3 mg/kg THC, 3 mg/kg CBD, or 3 mg/kg THC +3 mg/kg CBD from gestational day 5 to postnatal day 10. Mass spectroscopic (MS) analyses were conducted to measure the THC and CBD brain levels in dams and their embryonic progenies. PCE adults were subjected to a battery of behavioral tests: open field arena, sucrose preference test, marble burying test, nestlet shredding test, and FST.
Results: MS analysis found substantial levels of THC and CBD in embryonic brains. Our behavioral testing found that PCE females receiving THC or CBD buried significantly more marbles than control mice. Interestingly, PCE males receiving CBD or THC+CBD had significantly increased sucrose preference. While PCE with THC or CBD did not affect FST immobility, PCE with THC or CBD prevented fluoxetine from decreasing immobility in both males and females. Excitingly, fatty acid amide hydrolase (FAAH) inhibition with a dose of URB597 that was behaviorally inactive in the FST rescued fluoxetine efficacy in PCE mice of both sexes.
Conclusions: Our data suggest that PCE with either THC, CBD, or THC+CBD alters repetitive and hedonic behaviors in a phytocannabinoid and sex-dependent manner. In addition, PCE with THC or CBD prevents fluoxetine from enhancing coping behavior. The restoration of fluoxetine responsiveness in THC or CBD PCE adults by inhibition of FAAH suggests that PCE causes a lasting reduction of the ECS and that enhancement of anandamide signaling represents a potential treatment for behavioral deficits following PCE.