Please use this link to access this publication.
Abstract
The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam.