Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Multiple Sclerosis, Safety, Spasticity
Loading...

Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study

Objective: Cannabis may alleviate some symptoms associated with multiple sclerosis (MS). This study investigated the effect of an orally administered standardized Cannabis sativa plant extract in MS patients with poorly controlled spasticity. Methods: During their inpatient rehabilitation programme, 57 patients were enrolled in a prospective, randomized, double-blind, placebo-controlled crossover study of cannabis-extract capsules standardized to 2.5 mg tetrahydrocannabinol (THC) and 0.9 mg cannabidiol (CBD) each. Patients in group A started with a drug escalation phase from 15 to maximally 30 mg THC by 5 mg per day if well tolerated, being on active medication for 14 days before starting placebo. Patients in group B...
Read More

Endocannabinoid signaling in neurotoxicity and neuroprotection

Abstract The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the...
Read More

Neuroprotection by D9 -Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that 9 -tetrahydrocannabinol (9 -THC), the main active compound in marijuana, reduces neuronal injury in neonatal rats injected intracerebrally with the Na /K -ATPase inhibitor ouabain to elicit excitotoxicity. In the acute phase 9 -THC reduced the volume of cytotoxic edema by 22%. After 7 d, 36% less neuronal damage was observed in treated rats compared with control animals. Coadministration of the CB1 cannabinoid receptor antagonist SR141716 prevented the neuroprotective actions of 9...
Read More

Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes

Diabetic retinopathy is characterized by blood-retinal barrier (BRB) breakdown and neurotoxicity. These pathologies have been associated with oxidative stress and proinflammatory cytokines, which may operate by activating their downstream target p38 MAP kinase. In the present study, the protective effects of a nonpsychotropic cannabinoid, cannabidiol (CBD), were examined in streptozotocin-induced diabetic rats after 1, 2, or 4 weeks. Retinal cell death was determined by terminal dUTP nick-end labeling assay; BRB function by quantifying extravasation of bovine serum albumin-fluorescein; and oxidative stress by assays for lipid peroxidation, dichlorofluorescein fluorescence, and tyrosine nitration. Experimental diabetes induced significant increases in oxidative stress, retinal neuronal cell death, and...
Read More

Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells

Abstract Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of...
Read More

Neuroprotective Effect of (-)D9 -Tetrahydrocannabinol and Cannabidiol in N-Methyl-D-Aspartate-Induced Retinal Neurotoxicity

In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic 9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-Daspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL, a superoxide dismutase-mimetic), N--nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron...
Read More

Potentiation of Cannabinoid-Induced Cytotoxicity in Mantle Cell Lymphoma through Modulation of Ceramide Metabolism

Ceramide levels are elevated in mantle cell lymphoma (MCL) cells following treatment with cannabinoids. Here, we investigated the pathways of ceramide accumulation in the MCL cell line Rec-1 using the stable endocannabinoid analogue R(+)-methanandamide (R-MA). We further interfered with the conversion of ceramide into sphingolipids that promote cell growth. Treatment with R-MA led to increased levels of ceramide species C16, C18, C24, and C24:1 and transcriptional induction of ceramide synthases (CerS) 3 and 6. The effects were attenuated using SR141716A, which has high affinity to cannabinoid receptor 1 (CB1). The CB1-mediated induction of CerS3 and CerS6 mRNA was confirmed using Win-55,212-2. Simultaneous silencing of...
Read More

Safety and efficacy of a novel cannabinoid chemotherapeutic, KM-233, for the treatment of high-grade glioma

OBJECTIVE: To test in vitro and in vivo the safety and efficacy of a novel chemotherapeutic agent, KM-233, for the treatment of glioma. METHODS: In vitro cell cytotoxicity assays were used to measure and compare the cytotoxic effects of KM-233, Delta(8)-tetrahydrocannabinol (THC), and bis-chloroethyl-nitrosurea (BCNU) against human U87 glioma cells. An organotypic brain slice culture model was used for safety and toxicity studies. A human glioma-SCID mouse side-pocket tumor model was used to test in vivo the safety and efficacy of KM-233 with intratumoral and intra-peritoneal administration. RESULTS: KM-233 is a classical cannabinoid with good blood brain barrier penetration that possesses a selective affinity...
Read More

Safety and Side Effects of Cannabidiol, a Cannabis sativa Constituent

Cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, has multiple pharmacological actions, including anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, little is known about its safety and side effect profile in animals and humans. This review describes in vivo and in vitro reports of CBD administration across a wide range of concentrations, based on reports retrieved from Web of Science, Scielo and Medline. The keywords searched were “cannabinoids”, “cannabidiol” and “side effects”. Several studies suggest that CBD is non-toxic in non-transformed cells and does not induce changes on food intake, does not induce catalepsy, does not affect physiological parameters (heart rate, blood pressure and...
Read More

Safety and Toxicology of Cannabinoids

There is extensive research on the safety, toxicology, potency, and therapeutic potential of cannabis. However, uncertainty remains facilitating continued debate on medical and recreational cannabis policies at the state and federal levels. This review will include a brief description of cannabinoids and the endocannabinoid system; a summary of the acute and long-term effects of cannabis; and a discussion of the therapeutic potential of cannabis. The conclusions about safety and efficacy will then be compared with the current social and political climate to suggest future policy directions and general guidelines.
Read More
« Previous 1 … 15 16 17

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.