Skip to the content
  • 719-347-5400
  • [email protected]
Get Started for Free!
Log In
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • National Cannabis Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Partner Marketplace
    • Merch Shop
  • Blog
    • Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • National Cannabis Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Partner Marketplace
    • Merch Shop
  • Blog
    • Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
Log In
Donate
Log In
Donate
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • National Cannabis Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Partner Marketplace
    • Merch Shop
  • Blog
    • Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • National Cannabis Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Partner Marketplace
    • Merch Shop
  • Blog
    • Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Cannabidiol (CBD), hypothermia, hypoxic-ischemic encephalopathy, neonatal brain, neurodevelopment, neuroprotection, newborn animal
Loading...

Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

Abstract Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged...
Read More

Early increase of cannabinoid receptor density after experimental traumatic brain injury in the newborn piglet

Paediatric traumatic brain injury (TBI) is a leading cause of death and disability. Previous studies showed neuroprotection after TBI by (endo)cannabinoid mechanisms, suggesting involvement of cannabinoid receptors (CBR). We therefore determined CBR densities and expression of the translocator protein 18 kDA (TSPO) in newborn piglets after experimental TBI. Newborn female piglets were subjected to sham operation (n=6) or fluid-percussion (FP) injury (n=7) under controlled physiological conditions. After six hours, brains were frozen, sagittally cut and incubated with radioligands for CBR ([3 HCP55,940, [3 H]SR141716A) and TSPO ([3 H]PK11195), an indicator of gliosis/brain injury. Early after injury, FP-TBI elicited a significant ICP increase at a...
Read More

CB1 and CB2 Cannabinoid Receptor Antagonists Prevent Minocycline-Induced Neuroprotection Following Traumatic Brain Injury in Mice

Abstract Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by...
Read More

Cannabinoids inhibit neurodegeneration in models of multiple sclerosis

Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by in¯ammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice de®cient in the cannabinoid receptor CB1 tolerate in¯ammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide signi®cant neuroprotection from the consequences of in¯ammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes...
Read More

Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications

Abstract Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems. One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells. These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid...
Read More

Cannabinoids in experimental stroke: a systematic review and meta-analysis

Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. We systematically reviewed CBs in preclinical stroke to guide further experimental protocols. We selected controlled studies assessing acute administration of CBs for experimental stroke, identified through systematic searches. Data were extracted on lesion volume, outcome and quality, and analyzed using random effect models. Results are expressed as standardized mean difference (SMD) with 95% confidence intervals (CIs). In all, 144 experiments (34 publications) assessed CBs on infarct volume in 1,473 animals. Cannabinoids reduced infarct volume in transient (SMD − 1.41 (95% CI − 1.71), − 1.11) Po0.00001) and permanent...
Read More

Cannabinoids and neuroprotection in basal ganglia disorders

Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson's disease and Huntington's chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases...
Read More

Cannabidiol Targets Mitochondria to Regulate Intracellular Ca2+ Levels

Cannabinoids and the endocannabinoid system have attracted considerable interest for therapeutic applications. Nevertheless, the mechanism of action of one of the main nonpsychoactive phytocannabinoids, cannabidiol (CBD), remains elusive despite potentially beneficial properties as an anti-convulsant and neuroprotectant. Here, we characterize the mechanisms by which CBD regulates Ca 2 homeostasis and mediates neuroprotection in neuronal preparations. Imaging studies in hippocampal cultures using fura-2 AM suggested that CBD-mediated Ca 2 regulation is bidirectional, depending on the excitability of cells. Under physiological K /Ca 2 levels, CBD caused a subtle rise in [Ca 2]i , whereas CBD reduced [Ca 2]i and prevented Ca 2 oscillations under high-excitability...
Read More

Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?

Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, antioxidant, antiemetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and antioxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with ∆ 9 -tetrahydrocannabinol is already under clinical evaluation in patients...
Read More

Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants

The neuroprotective actions of cannabidiol and other cannabinoids were examined in rat cortical neuron cultures exposed to toxic levels of the excitatory neurotransmitter glutamate. Glutamate toxicity was reduced by both cannabidiol, a nonpsychoactive constituent of marijuana, and the psychotropic cannabinoid (2)D9 tetrahydrocannabinol(THC). Cannabinoids protected equally well against neurotoxicity mediated by N-methyl-D-aspartate receptors, 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid receptors, or kainate receptors. N-methyl-D-aspartate receptorinduced toxicity has been shown to be calcium dependent; this study demonstrates that 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acidykainate receptor-type neurotoxicity is also calcium-dependent, partly mediated by voltage sensitive calcium channels. The neuroprotection observed with cannabidiol and THC was unaffected by cannabinoid receptor antagonist, indicating it to be cannabinoid...
Read More
« Previous 1 2 3 4 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Newsletter Sign-Up

Sign up to receive insights, news, and updates from Realm of Caring.

Email(Required)

Copyright © 2025 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.