Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
  • Donate
  • Register
  • Login
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
    • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
  • Donate
  • Register
  • Login
  • Cannabinoid receptor 2 (CB2), Cannabinoid/s, ischemic stroke, neuroprotection
Loading...

The impact of cannabinoid type 2 receptors (CB2Rs) in neuroprotection against neurological disorders

Abstract   Cannabinoids have long been used for their psychotropic and possible medical properties of symptom relief. In the past few years, a vast literature shows that cannabinoids are neuroprotective under different pathological situations. Most of the effects of cannabinoids are mediated by the well-characterized cannabinoid receptors, the cannabinoid type 1 receptor (CB1R) and cannabinoid type 2 receptor (CB2R). Even though CB1Rs are highly expressed in the central nervous system (CNS), the adverse central side effects and the development of tolerance resulting from CB1R activation may ultimately limit the clinical utility of CB1R agonists. In contrast to the ubiquitous presence of CB1Rs, CB2Rs are...
Read More

Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination

Abstract Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler’s murine encephalomyelitis virus-induced demyelinating...
Read More

Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage

Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attention as potential neuroprotective agents in a number of neurodegenerative disorders of the adult. One recent study showed neuroprotection by the cannabinoid agonist WIN-55212 in a newborn rat model of acute severe asphyxia. The present study was designed to assess the neuroprotective effects of the endogenous cannabinoid anandamide using a well-defined rodent...
Read More

The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects

Abstract Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post-synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions...
Read More

Endocannabinoids: A Promising Impact for Traumatic Brain Injury

The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG). Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms. Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the...
Read More

Activation of Cannabinoid CB2 Receptor – Mediated AMPK/CREB Pathway Reduces Cerebral Ischemic Injury

The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models. In rat cortical neurons/glia mixed cultures, a CB2R agonist, trans-caryophyllene (TC), decreased neuronal injury and mitochondrial depolarization caused by oxygen-glucose deprivation/re-oxygenation (OGD/R); these effects were reversed by the selective CB2R antagonist, AM630, but not by a type 1 cannabinoid receptor antagonist, AM251. Although it lacked free radical scavenging and antioxidant enzyme induction activities, TC reduced OGD/R-evoked...
Read More

Endogenous Interleukin-1 Receptor Antagonist Mediates Anti-Inflammatory and Neuroprotective Actions of Cannabinoids in Neurons and Glia

Abstract Interleukin-1 receptor antagonist (IL-1ra) is an important anti-inflammatory cytokine that blocks all known actions of IL-1 and markedly protects against experimentally induced ischemic, excitotoxic, and traumatic brain insults. Cannabinoids (CBs) also exert potent anti-inflammatory and neuroprotective effects, but the mechanisms of their actions are unknown. Here we tested the hypothesis that the actions of CBs are mediated by endogenous IL-1ra. We report for the first time that both CB1 and CB2 receptors modulate release of endogenous IL-1ra from primary cultured glial cells. Activation of CB1 or CB2 receptors increased lipopolysaccharide-induced IL-1ra release, and specific CB1 or CB2 antagonists blocked lipopolysaccharide-induced production of IL-1ra...
Read More

Activation of cortical type 2 cannabinoid receptors ameliorates ischemic brain injury

Abstract The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models. In rat cortical neurons/glia mixed cultures, a CB2R agonist, trans-caryophyllene (TC), decreased neuronal injury and mitochondrial depolarization caused by oxygen-glucose deprivation/re-oxygenation (OGD/R); these effects were reversed by the selective CB2R antagonist, AM630, but not by a type 1 cannabinoid receptor antagonist, AM251. Although it lacked free radical scavenging and antioxidant enzyme induction activities, TC reduced...
Read More

Future of Cannabis and Cannabinoids in Therapeutics

This study reviews human clinical experience to date with several synthetic cannabinoids, including nabilone, levonantradol, ajulemic acid (CT3), dexanabinol (HU-211), HU-308, and SR141716 (Rimonabant®). Additionally, the concept of “clinical endogenous cannabinoid deficiency” is explored as a possible factor in migraine, idiopathic bowel disease, fibromyalgia and other clinical pain states. The concept of analgesic synergy of cannabinoids and opioids is addressed. A cannabinoid-mediated improvement in night vision at the retinal level is discussed, as well as its potential application to treatment of retinitis pigmentosa and other conditions. Additionally noted is the role of cannabinoid treatment in neuroprotection and its application to closed head injury, cerebrovascular...
Read More

Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid

Effective treatment for amyotrophic lateral sclerosis (ALS) remains elusive. Two of the primary hypotheses underlying motor neuron vulnerability are susceptibility to excitotoxicity and oxidative damage. There is rapidly emerging evidence that the cannabinoid receptor system has the potential to reduce both excitotoxic and oxidative cell damage. Here we report that treatment with Delta(9)-tetrahydrocannabinol (Delta(9)-THC) was effective if administered either before or after onset of signs in the ALS mouse model (hSOD(G93A) transgenic mice). Administration at the onset of tremors delayed motor impairment and prolonged survival in Delta(9)-THC treated mice when compared to vehicle controls. In addition, we present an improved method for the analysis...
Read More
1 2 3 4 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2023 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer