Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • AMPK, Cannabinoid receptor 1 (CB1), Cannabinoid/s, Ghrelin, Ghrelin receptor, Growth hormone secretagogue receptor knockout
Loading...

Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism

Abstract Introduction Ghrelin is a potent orexigenic brain-gut peptide with lipogenic and diabetogenic effects, possibly mediated by growth hormone secretagogue receptor (GHS-R1a). Cannabinoids also have orexigenic and lipogenic effects. AMPK is a regulator of energy homeostasis and we have previously shown that ghrelin and cannabinoids stimulate hypothalamic AMPK activity while inhibiting it in the liver and adipose tissue, suggesting that AMPK mediates both the central appetite-inducing and peripheral effects of ghrelin and cannabinoids. Aims Using GHS-R KO mice, we investigated whether the known ghrelin receptor GHS-R1a is required for the tissue-specific effects of ghrelin on AMPK activity, and if an intact ghrelin signalling pathway...
Read More

High level of cannabinoid receptor 1, absence of regulator of G protein signalling 13 and differential expression of Cyclin D1 in mantle cell lymphoma

Mantle cell lymphoma (MCL) is a moderately aggressive B-cell lymphoma that responds poorly to currently used therapeutic protocols. In order to identify tumour characteristics that improve the understanding of biology of MCL, analysis of oligonucleotide microarrays were used to define specific gene expression profiles. Biopsy samples of MCL cases were compared to reactive lymphoid tissue. Among genes differentially expressed in MCL were genes that are involved in the regulation of proliferation, cell signalling, adhesion and homing. Furthermore, some genes with previously unknown function, such as C11orf32, C2orf10, TBC1D9 and ABCA6 were found to be differentially expressed in MCL compared to reactive lymphoid tissue. Of...
Read More

Hyperalgesia by low doses of the local anesthetic lidocaine involves cannabinoid signaling: An fMRI study in mice

Lidocaine is clinically widely used as a local anesthetic inhibiting propagation of action potentials in peripheral nerve fibers. Correspondingly, the functional magnetic resonance imaging (fMRI) response in mouse brain to peripheral noxious input is largely suppressed by local lidocaine administered at doses used in a clinical setting. We observed, however, that local administration of lidocaine at doses 100 lower than that used clinically led to a significantly increased sensitivity of mice to noxious forepaw stimulation as revealed by fMRI. This hyperalgesic response could be confirmed by behavioral readouts using the von Frey filament test. The increased sensitivity was found to involve a type 1...
Read More

Hypothalamic POMC neurons promote cannabinoid-induced feeding

Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases...
Read More

Immunohistochemical analysis of cannabinoid receptor 1 expression in steatotic rat livers

The primary aim of the present study was to determine the expression levels of cannabinoid receptor type 1 (CB1) in steatotic rat livers. The secondary aim was to clarify whether steatosis and inflammation are more marked in areas with increased CB1 overexpression. For ethical and economic reasons, the present study investigated tissue from archived liver blocks, which were obtained from 38 rats that had been euthanized during the course of previous research at the Karolinska Institute of the Karolinska University Hospital (Stockholm, Sweden) and Lund University (Malmö, Sweden). Liver tissue fixed in formalin and embedded in paraffin was used that had been sourced from...
Read More

Involvement of the endocannabinoid system in drug addiction

Recent studies have shown that the endocannabinoid system is involved in the common neurobiological mechanism underlying drug addiction. This system participates in the primary rewarding effects of cannabinoids, nicotine, alcohol and opioids, through the release of endocannabinoids in the ventral tegmental area. Endocannabinoids are also involved in the motivation to seek drugs by a dopamine-independent mechanism, demonstrated for psychostimulants and opioids. The endocannabinoid system also participates in the common mechanisms underlying relapse to drugseeking behaviour by mediating the motivational effects of drug-related environmental stimuli and drug reexposure. In agreement, clinical trials have suggested that the CB1 cannabinoid antagonist rimonabant can cause smoking cessation. Thus,...
Read More

Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation

Although adverse effects of cannabinoids on pregnancy have been indicated for many years, the mechanisms by which they exert their actions were not clearly understood. Only recently, molecular and biochemical approaches have led to the identification of two types of cannabinoid receptors, brain-type receptors (CB1-R) and spleen-type receptors (CB2-R), which mediate cannabinoid effects. These findings were followed by the discovery of endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG). The natural cannabinoids and endocannabinoids exert their effects via cannabinoid receptors and share similar pharmacological and physiological properties. Recent demonstration of expression of functional CB1-R in the preimplantation embryo and synthesis of anandamide in the pregnant uterus of...
Read More

Loss of Cannabinoid Receptor 1 Accelerates Intestinal Tumor Growth

Although endocannabinoid signaling is important for certain aspects of gastrointestinal homeostasis, the role of the cannabinoid receptors (CB) in colorectal cancer has not been defined. Here we show that CB1 expression was silenced in human colorectal cancer due to methylation of the CB1 promoter. Our genetic and pharmacologic studies reveal that loss or inhibition of CB1 accelerated intestinal adenoma growth in ApcMin/+ mice whereas activation of CB1 attenuated intestinal tumor growth by inducing cell death via down-regulation of the antiapoptotic factor survivin. This down-regulation of survivin by CB1 is mediated by a cyclic AMP–dependent protein kinase A signaling pathway. These results indicate that the...
Read More

Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?

Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?. Am J Physiol Endocrinol Metab 307: E1–E13, 2014. First published May 6, 2014; doi:10.1152/ajpendo.00100.2014.—The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the...
Read More

Multiple Roles for the Endocannabinoid System During the Earliest Stages of Life: Pre- and Postnatal Development

The endocannabinoid system, including its receptors (CB1 and CB2), endogenous ligands (‘endocannabinoids’), synthesising and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. In addition, the endocannabinoids, notably 2-arachidonyl glycerol, are also present in maternal milk. During three distinct developmental stages (i.e. embryonic implantation, prenatal brain development and postnatal suckling), the endocannabinoid system appears to play an essential role for development and survival. Thus, during early pregnancy, successful embryonic passage through the oviduct and implantation into the uterus both require critical enzymatic control of optimal anandamide levels at the appropriate...
Read More
« Previous 1 … 13 14 15 16 17 18 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.