Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Cannabidiol (CBD), Cannabigerol (CBG)
Loading...

Cannabidiol and Cannabigerol Inhibit Cholangiocarcinoma Growth In Vitro via Divergent Cell Death Pathways

Abstract Cholangiocarcinoma (CCA) is a rare and highly lethal disease with few effective treatment options. Cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) are non-psychedelic components extracted from cannabis. These non-psychoactive compounds have shown anti-proliferative potential in other tumor models; however, the efficacy of CBD and CBG in CCA is unknown. Furthermore, two cell death pathways are implicated with CBD resulting in autophagic degeneration and CBG in apoptosis. HuCC-T1 cells, Mz-ChA-1 cells (CCA cell lines) and H69 cells (immortalized cholangiocytes), were treated with CBD and CBG for 24 to 48 h. The influence of these cannabinoids on proliferation was assessed via MTT assay. Apoptosis and cell...
Read More

An Examination of the Anti-Cancer Properties of Plant Cannabinoids in Preclinical Models of Mesothelioma

Simple Summary Mesothelioma is a deadly disease with few treatment options. Phytocannabinoids derived from the cannabis plant are garnering interest for their anti-cancer properties, however very little is known about their effects in mesothelioma. We aimed to assess whether phytocannabinoids have anti-cancer effects in mesothelioma and potential modes of action. We showed that several phytocannabinoids inhibited growth of mesothelioma cells, with two phytocannabinoids, cannabidiol (CBD) and cannabigerol (CBG), being the most potent. CBD and CBG also inhibited mesothelioma cell migration and invasion. Gene expression analysis highlighted signalling pathways that play a role in how CBD and CBG may exert their anti-cancer effects. CBD and...
Read More

Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications

Abstract In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed...
Read More

In Vitro and Clinical Evaluation of Cannabigerol (CBG) Produced via Yeast Biosynthesis: A Cannabinoid with a Broad Range of Anti-Inflammatory and Skin Health-Boosting Properties

Abstract Cannabigerol (CBG) is a minor non-psychoactive cannabinoid present in Cannabis sativa L. (C. sativa) at low levels (<1% per dry weight) that serves as the direct precursor to both cannabidiol (CBD) and tetrahydrocannabinol (THC). Consequently, efforts to extract and purify CBG from C. sativa is both challenging and expensive. However, utilizing a novel yeast fermentation technology platform, minor cannabinoids such as CBG can be produced in a more sustainable, cost-effective, and timely process as compared to plant-based production. While CBD has been studied extensively, demonstrating several beneficial skin properties, there are a paucity of studies characterizing the activity of CBG in human skin. Therefore, our aim was...
Read More

Computational Study on the Enzyme–Ligand Relationship between Cannabis Phytochemicals and Human Acetylcholinesterase: Implications in Alzheimer’s Disease

Please use this link to access this publication. Abstract Cannabis has shown promise in treating various neurological disorders, including Alzheimer’s disease (AD). AD is a devastating neurodegenerative disorder that affects millions of people worldwide. Current treatments for AD are limited and are not very effective. This study investigated the enzyme–ligand relationship between nine active components of cannabis and human acetylcholinesterase (HuAChE) enzyme, which is significant in AD. Specifically, computational methods such as quantum mechanics, molecular docking, molecular dynamics, and free energy calculations were used to identify the cannabis phytochemicals with the highest HuAChE affinity and to understand the specific binding mechanisms involved. Our results...
Read More

Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties—Unveiling Nature’s Treasure Trove

Abstract Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Białobrzeska, Tygra, and Henola, based on the results obtained with the 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of...
Read More

Evidence that the plant cannabinoid cannabigerol is a highly potent α2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist

Background and purpose: Cannabis is the source of at least seventy phytocannabinoids. The pharmacology of most of these has been little investigated, three notable exceptions being D9 -tetrahydrocannabinol, cannabidiol and D9 -tetrahydrocannabivarin. This investigation addressed the question of whether the little-studied phytocannabinoid, cannabigerol, can activate or block any G protein-coupled receptor.   Experimental approach: The [35S]GTPgS binding assay, performed with mouse brain membranes, was used to test the ability of cannabigerol to produce G protein-coupled receptor activation or blockade. Its ability to displace [3 H]CP55940 from mouse CB1 and human CB2 cannabinoid receptors and to inhibit electrically evoked contractions of the mouse isolated vas...
Read More

Phytocannabinoids promote viability and functional adipogenesis of bonemarrow-derived mesenchymal stem cells through different molecular targets

Abstract: The cellular microenvironment plays a critical role in the maintenance of bone marrow-derived mesenchymal stem cells (BM-MSCs) and their subsequent cell lineage differentiation. Recent studies suggested that individuals with adipocyte-related metabolic disorders have altered function and adipogenic potential of adipose stem cell subpopulations, primarily BM-MSCs, increasing the risk of heart attack, stroke or diabetes. In this study, we explored the potential therapeutic effect of some of the most abundant non-euphoric compounds derived from the Cannabis sativa plant (or phytocannabinoids) including tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabigerol (CBG), cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), by analysing their pharmacological activity on viability of endogenous BM-MSCs...
Read More

In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid

Abstract: Inflammation and oxidative stress play main roles in neurodegeneration. Interestingly, different natural compounds may be able to exert neuroprotective actions against inflammation and oxidative stress, protecting from neuronal cell loss. Among these natural sources, Cannabis sativa represents a reservoir of compounds exerting beneficial properties, including cannabigerol (CBG), whose antioxidant properties have already been demonstrated in macrophages. Here, we aimed to evaluate the ability of CBG to protect NSC-34 motor neurons against the toxicity induced from the medium of LPS-stimulated RAW 264.7 macrophages. Using MTT assay, we observed that CBG pre-treatment was able to reduce the loss of cell viability induced by the medium...
Read More

The Pharmacological Case for Cannabigerol

ABSTRACT   Medical cannabis and individual cannabinoids, such as D9- tetrahydrocannabinol (D9-THC) and cannabidiol (CBD), are receiving growing attention in both the media and the scientific literature. The Cannabis plant, however, produces over 100 different cannabinoids, and cannabigerol (CBG) serves as the precursor molecule for the most abundant phytocannabinoids. CBG exhibits affinity and activity characteristics between D9-THC and CBD at the cannabinoid receptors but appears to be unique in its interactions with a-2 adrenoceptors and 5-hydroxytryptamine (5-HT1A). Studies indicate that CBG may have therapeutic potential in treating neurologic disorders (e.g., Huntington disease, Parkinson disease, and multiple sclerosis) and inflammatory bowel disease, as well as...
Read More
« Previous 1 2 3 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.