Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Cannabidiol (CBD)
Loading...

Prediction of Carboxylesterase 1-mediated In Vivo Drug Interaction between Methylphenidate and Cannabinoids using Static and Physiologically Based Pharmacokinetic Models

Abstract The use of cannabis products has increased substantially. Cannabis products have been perceived and investigated as potential treatments for attention-deficit/hyperactivity disorder (ADHD). Accordingly, co-administration of cannabis products and methylphenidate (MPH), a first-line medication for ADHD, is possible. Oral MPH undergoes extensive presystemic metabolism by carboxylesterase 1 (CES1), a hepatic enzyme which can be inhibited by two prominent cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). This prompts further investigation into the likelihood of clinical interactions between MPH and these two cannabinoids through CES1 inhibition. In the present study, inhibition parameters were obtained from a human liver S9 system and then incorporated into static and physiologically-based...
Read More

Cannabidiol enhancement of exposure therapy in treatment refractory patients with social anxiety disorder and panic disorder with agoraphobia: A randomised controlled trial

Abstract Preclinical research suggests that enhancing CB1 receptor agonism may improve fear extinction. In order to translate this knowledge into a clinical application we examined whether cannabidiol (CBD), a hydrolysis inhibitor of the endogenous CB1 receptor agonist anandamide (AEA), would enhance the effects of exposure therapy in treatment refractory patients with anxiety disorders. Patients with panic disorder with agoraphobia or social anxiety disorder were recruited for a double-blind parallel randomised controlled trial at three mental health care centres in the Netherlands. Eight therapist-assisted exposure in vivo sessions (weekly, outpatient) were augmented with 300 mg oral CBD (n = 39) or placebo (n = 41). The Fear Questionnaire (FQ) was assessed at baseline, mid- and post-treatment, and at 3 and 6 months follow-up. Primary analyses were on an intent-to-treat basis....
Read More

Effects of chronic cannabidiol in a mouse model of naturally occurring neuroinflammation, neurodegeneration, and spontaneous seizures

Abstract Cannabidiol (CBD) has gained attention as a therapeutic agent and is purported to have immunomodulatory, neuroprotective, and anti-seizure effects. Here, we determined the effects of chronic CBD administration in a mouse model of CLN1 disease (Cln1−/−) that simultaneously exhibits neuroinflammation, neurodegeneration, and spontaneous seizures. Proteomic analysis showed that putative CBD receptors are expressed at similar levels in the brains of Cln1−/− mice compared to normal animals. Cln1−/− mice received an oral dose (100 mg/kg/day) of CBD for six months and were evaluated for changes in pathological markers of disease and seizures. Chronic cannabidiol administration was well-tolerated, high levels of CBD were detected in the brain, and markers of...
Read More

Protective effect and mechanism of cannabidiol on myocardial injury in exhaustive exercise training mice

Please use this link to access this publication. Abstract Cannabinoid diphenol (CBD) is a non-toxic main component extracted from cannabis, which has the effects of anti-inflammatory, anti-apoptosis and anti-oxidative stress. In recent years, exercise-induced myocardial injury has become a research hotspot in the field of sports medicine and sports physiology. Exercise-induced myocardial injury is closely related to oxidative stress, inflammatory response and apoptosis. However, there is no clear evidence of the relationship between CBD and exercise-induced myocardial injury. In this study, by establishing an animal model of exhaustive exercise training in mice, the protective effect of CBD on myocardial injury in mice was elaborated, and the possible molecular mechanism was discussed. After...
Read More

Cannabidiol induces autophagy and improves neuronal health associated with SIRT1 mediated longevity

Abstract Autophagy is a catabolic process to eliminate defective cellular molecules via lysosome-mediated degradation. Dysfunctional autophagy is associated with accelerated aging, whereas stimulation of autophagy could have potent anti-aging effects. We report that cannabidiol (CBD), a natural compound from Cannabis sativa, extends lifespan and rescues age-associated physiological declines in C. elegans. CBD promoted autophagic flux in nerve-ring neurons visualized by a tandem-tagged LGG-1 reporter during aging in C. elegans. Similarly, CBD activated autophagic flux in hippocampal and SH-SY5Y neurons. Furthermore, CBD-mediated lifespan extension was dependent on autophagy genes (bec-1, vps-34, and sqst-1) confirmed by RNAi knockdown experiments. C. elegans neurons have previously been shown to accumulate aberrant morphologies, such as beading...
Read More

Differential Effects of Cannabidiol and a Novel Cannabidiol Analog on Oxycodone Place Preference and Analgesia in Mice: an Opioid Abuse Deterrent with Analgesic Properties

Please use this link to access this publication. Abstract Background and Purpose: This study sought to determine whether cannabidiol (CBD) or a CBD derivative, CBD monovalinate monohemisuccinate (CBD-val-HS), could attenuate the development of oxycodone reward while retaining its analgesic effects. Experimental Approach: To determine the effect on oxycodone reward, animals were enrolled in the conditioned place preference paradigm and received either saline or oxycodone (3.0 mg/kg) in combination with either CBD or CBD-val-HS utilizing three sets of drug-/no drug-conditioning trials. To determine if the doses of CBD or CBD-val-HS that blocked opioid reward would affect nociceptive processes, animals were enrolled in the hot plate and abdominal writhing...
Read More

Cannabidiol for Functional Dyspepsia With Normal Gastric Emptying: A Randomized Controlled Trial

Please use this link to access this publication. Abstract INTRODUCTION: Cannabidiol (CBD), a CBR2 agonist with limited psychic effects, antagonizes CB1/CB2 receptors. Allelic variation CNR1 (gene for CBR1) rs806378 and FAAH rs324420 were associated with altered gut motility and sensation. This study aimed to compare the pharmacodynamics and clinical effects of a 4-week treatment with pharmaceutical-grade CBD vs placebo and assess the interactions of FAAH and CNR1 gene variants on the effects of CBD in patients with functional dyspepsia (FD). METHODS: We performed a randomized, double-blinded, placebo-controlled (1:1 ratio) study of CBD b.i.d. (20 mg/kg/d according to the US Food and Drug Administration escalation guidance) in FD patients with nondelayed gastric emptying...
Read More

Neuroprotection of cannabidiol in epileptic rats: Gut microbiome and metabolome sequencing

Abstract Aims: Epilepsy is a neurological disease occurring worldwide. Alterations in the gut microbial composition may be involved in the development of Epilepsy. The study aimed to investigate the effects of cannabidiol (CBD) on gut microbiota and the metabolic profile of epileptic rats. Materials and methods and results: A temporal lobe epilepsy rat model was established using Li-pilocarpine. CBD increased the incubation period and reduced the epileptic state in rats. Compared to epileptic rats, the M1/M2 ratio of microglia in the CBD group was significantly decreased. The expression of IL-1β, IL-6, and TNF-α in the CBD group decreased, while IL-10, IL-4, and TGF-β1 increased. 16S rDNA...
Read More

Inflammation-targeted cannabidiol-loaded nanomicelles for enhanced oral mucositis treatment

Abstract One of the most common complications of cancer chemotherapy is oral mucositis (OM), a serious kind of oral ulceration, but its effective treatment remains a serious challenge. In this study, we used deoxycholic acid and fucoidan to prepare inflammation-targeting nanomicelles (FD), because fucoidan can target inflammation due to its high binding affinity for P-selectin. The hydrophobic anti-inflammatory drug cannabidiol (CBD) was then loaded into the hydrophobic core of FD. The resulting CBD-loaded FD micelles (CBD/FD) had uniform particle size and morphology, as well as favorable serum stability. Moreover, administration of the FD micelles via intravenous injection or in situ dripping in an OM mouse model enhanced the...
Read More

Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation

Abstract Cannabis (Cannabis sativa L.) plants from the family Cannabidaceae have been used since ancient times, to produce fibers, oil, and for medicinal purposes. Psychoactive delta-9-tetrahydrocannabinol (THC) and nonpsychoactive cannabidiol (CBD) are the main pharmacologically active compounds of Cannabis sativa. These compounds have, for a long time, been under extensive investigation, and their potent antioxidant and inflammatory properties have been reported, although the detailed mechanisms of their actions have not been fully clarified. CB1 receptors are suggested to be responsible for the analgesic effect of THC, while CB2 receptors may account for its immunomodulatory properties. Unlike THC, CBD has a very low affinity for both CB1 and CB2...
Read More
« Previous 1 … 77 78 79 80 81 … 118 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2025 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.