Abstract
Objective
Cognitive deficits and microstructural brain abnormalities are well documented in HIV-positive individuals (HIV+). This study evaluated whether chronic marijuana (MJ) use contributes to additional cognitive deficits or brain microstructural abnormalities that may reflect neuroinflammation or neuronal injury in HIV+.
Method
Using a 2 × 2 design, 44 HIV+ participants [23 minimal/no MJ users (HIV+), 21 chronic active MJ users (HIV + MJ)] were compared to 46 seronegative participants [24 minimal/no MJ users (SN) and 22 chronic MJ users (SN + MJ)] on neuropsychological performance (7 cognitive domains) and diffusion tensor imaging metrics, using an automated atlas to assess fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities, in 18 cortical and 4 subcortical brain regions.
Results
Compared to SN and regardless of MJ use, the HIV+ group had lower FA and higher diffusivities in multiple white matter and subcortical structures (p < 0.001–0.050), as well as poorer cognition in Fluency (p = 0.039), Attention/Working Memory (p = 0.009), Learning (p = 0.014), and Memory (p = 0.028). Regardless of HIV serostatus, MJ users had lower AD in uncinate fasciculus (p = 0.024) but similar cognition as nonusers. HIV serostatus and MJ use showed an interactive effect on mean diffusivity in the right globus pallidus but not on cognitive function. Furthermore, lower FA in left anterior internal capsule predicted poorer Fluency across all participants and worse Attention/Working Memory in all except SN subjects, while higher diffusivities in several white matter tracts also predicted lower cognitive domain Z-scores. Lastly, MJ users with or without HIV infection showed greater than normal age-dependent FA declines in superior longitudinal fasciculus, external capsule, and globus pallidus.
Conclusions
Our findings suggest that, except in the globus pallidus, chronic MJ use had no additional negative influence on brain microstructure or neurocognitive deficits in HIV+ individuals. However, lower AD in the uncinate fasciculus of MJ users suggests axonal loss in this white matter tract that connects to cannabinoid receptor rich brain regions that are involved in verbal memory and emotion. Furthermore, the greater than normal age-dependent FA declines in the white matter tracts and globus pallidus in MJ users suggest that older chronic MJ users may eventually have lesser neuronal integrity in these brain regions.