Cannabinoids, the active components of Cannabis sativa Linnaeus (marijuana) and their derivatives have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects and tumor regression. Here we show that expression levels of both cannabinoid receptors, CB1 and CB2, are significantly higher in CA-human papillomavirus-10 (virally transformed cells derived from adenocarcinoma of human prostate tissue), and other human prostate cells LNCaP, DUI45, PC3, and CWR22RN1 than in human prostate epithelial and PZ-HPV-7 (virally transformed cells derived from normal human prostate tissue) cells. WIN55,212-2 (mixed CB1/CB2 agonist) treatment with androgenresponsive LNCaP cells resulted in a dose- (1-10 Mmol/L) and time-dependent (24-48 hours) inhibition of cell growth, blocking of CB1 and CB2 receptors by their antagonists SR141716 (CB1) and SR144528 (CB2) significantly prevented this effect. Extending this observation, we found that WIN55,212-2 treatment with LNCaP resulted in a dose- (1-10 Mmol/L) and time-dependent (24-72 hours) induction of apoptosis (a), decrease in protein and mRNA expression of androgen receptor (b), decrease in intracellular protein and mRNA expression of prostate-specific antigen (c), decrease in secreted prostate-specific antigen levels (d), and decrease in protein expression of proliferation cell nuclear antigen and vascular endothelial growth factor (e). Our results suggest that WIN-55,212-2 or other non–habit-forming cannabinoid receptor agonists could be developed as novel therapeutic agents for the treatment of prostate cancer.