Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Immune Function
Loading...

Cannabinoid receptors and the regulation of immune response

Abstract Cannabinoid research underwent a tremendous increase during the last 10 years. This progress was made possible by the discovery of cannabinoid receptors and the endogenous ligands for these receptors. Cannabinoid research is developing in two major directions: neurobehavioral properties of cannabinoids and the impact of cannabinoids on the immune system. Recent studies characterized the cannabinoid-induced response as a very complex process because of the involvement of multiple signalling pathways linked to cannabinoid receptors or effects elicited by cannabinoids without receptor participation. The objective of this review is to present this complexity as it applies to immune response. The functional properties of cannabinoid receptors,...
Read More

Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how D9 - tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were...
Read More

Interaction Between The Protective Effects Of Cannabidiol And Palmitoylethanolamide In Experimental Model Of Multiple Sclerosis In C57bl6 Mice

Abstract Cannabinoids (CBs) have recently been approved to exert broad anti-inflammatory activities in experimental models of multiple sclerosis (MS). It has been demonstrated that these compounds could also have effects on neurodegeneration, demyelination, and autoimmune processes occurring in the pathology of MS. However, the clinical use of CBs is limited by their psychoactive effects. Among cannabinoid compounds, cannabidiol (CBD) and palmitoylethanolamide (PEA) have no psychotropic activities. We induced experimental autoimmune encephalomyelitis (EAE), a model of MS, by injecting myelin oligodendrocyte glycoprotein (MOG) to C57BL/6 mice. We assessed the effects of CBD, PEA, and co-administration of CBD and PEA on neurobehavioral scores, immune cell infiltration,...
Read More

Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists

The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The...
Read More

Histone Modifications Are Associated with Delta (9)-tetrahydrocannabinol-Mediated Alterations in Antigen-Specific T Cell Responses

Marijuana is one of the most abused drugs due to its psychotropic effects. Interestingly, it is also used for medicinal purposes. The main psychotropic component in marijuana, Δ 9 - tetrahydrocannabinol (THC), has also been shown to mediate potent anti-inflammatory properties. Whether the immunomodulatory activity of THC is mediated by epigenetic regulation has not been investigated previously. In this study, we employed ChIP-Seq technology to examine the in vivo effect of THC on global histone methylation in lymph node cells of mice immunized with a superantigen, staphylococcal enterotoxin B (SEB). We compared genome-wide histone H3K4, H3K27, H3K9, H3K36 trimethylation and H3K9 acetylation patterns in...
Read More

Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations

Abstract Two proteins with seven transmembrane-spanning domains typical of guanosine-nucleotide-binding-protein-coupled receptors have been identified as cannabinoid receptors; the central cannabinoid receptor, CB1, and the peripheral cannabinoid receptor, CB2, initially described in rat brain and spleen, respectively. Here, we report the distribution patterns for both CB1 and CB2 transcripts in human immune cells and in several human tissues, as analysed using a highly sensitive and quantitative PCR-based method. CB1 was mainly expressed in the central nervous system and, to a lower extent, in several peripheral tissues such as adrenal gland, heart, lung, prostate, uterus, ovary, testis, bone marrow, thymus and tonsils. In contrast, the CB2...
Read More

Delta-9-Tetrahydrocannabinol-Induced Apoptosis in the Thymus and Spleen as a Mechanism of Immunosuppression in Vitro and in Vivo

9 -Tetrahydrocannabinol (THC), the main psychoactive component of marijuana has been shown to suppress the immune response. However, the exact mechanism of THC-induced immunosuppression remains unclear. In the current study, we tested the hypothesis that exposure to THC leads to the induction of apoptosis in lymphocyte populations. Splenocytes of C57BL/6 mice cultured in the presence of 10 M or greater concentrations of THC showed significantly reduced proliferative response to mitogens, including anti-CD3 monoclonal antibodies (mAbs), concanavalin A (Con A), and lipopolysaccharide (LPS) in vitro. Thymocytes and naive and activated splenocytes exposed to 10 M or 20 M THC showed significantly increased levels of apoptosis....
Read More

CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies

Amongst the various demyelinating diseases that affect the central nervous system, those induced by an inflammatory response stand out because of their epidemiological relevance. The best known inflammatory-induced demyelinating disease is multiple sclerosis, but the immune response is a common pathogenic mechanism in many other less common pathologies (e.g., acute disseminated encephalomyelitis and acute necrotizing haemorrhagic encephalomyelitis). In all such cases, modulation of the immune response seems to be a logical therapeutic approach. Cannabinoids are well known immunomodulatory molecules that act through CB1 and CB2 receptors. While activation of CB1 receptors has a psychotropic effect, activation of CB2 receptors alone does not. Therefore, to...
Read More

Cannabinoids, Immune System and Cytokine Network

How cannabinoids influence immune function has been examined extensively in the last 30 years. Studies on drug-abusing humans and animals, as well as in vitro models employing immune cell cultures, have shown that marijuana, natural and endogenous cannabinoid compounds are immunomodulators. These substances modulate host resistance to bacterial, protozoan and viral infections as well as they can profoundly affect the Th1/Th2 response. Recently, two types of cannabinoid receptor, CB1 and CB2, have been discovered. While CB1 is expressed primarily in the brain, CB2 is peculiar of the immune cells. Cannabinoid receptors have been shown to be involved in some but not all of immune...
Read More

Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases?

Since the discovery of the cannabinoid receptors and their endogenous ligands, significant advances have been made in studying the physiological function of the endocannabinoid system. The presence of cannabinoid receptors on cells of the immune system and anecdotal and historical evidence suggesting that cannabis use has potent immuno-modulatory effects, has led to research directed at understanding the function and role of these receptors within the context of immunological cellular function. Studies from chronic cannabis smokers have provided much of the evidence for immunomodulatory effects of cannabis in humans, and animal and in vitro studies of immune cells such as T cells and macrophages have...
Read More
« Previous 1 2 3 4 5 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.