Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Basal ganglia, Cannabinoid receptor 1 (CB1), Cannabinoid receptor 2 (CB2), Cannabinoid/s, Endocannabinoid system, Huntington’s disease, neurodegeneration, neuroprotection, Parkinson’s disease
Loading...

Prospects for cannabinoid therapies in basal ganglia disorders

Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson’s disease (PD) and Huntington’s disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like D9 -tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation...
Read More

Role of the Endocannabinoid System in the Neuroendocrine Responses to Inflammation

A few years ago the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis. Several different endocannabinoids are synthesized in a broad class of cell types, including those in the brain and the immune system; they bind to cannabinoid G-protein-coupled receptors, having profound effects on a variety of behavioral, neuroendocrine and autonomic functions. The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also,...
Read More

The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system

Cannabidiol (CBD), the main non-psychotomimetic component of the plant Cannabis sativa, exerts therapeutically promising effects on human mental health such as inhibition of psychosis, anxiety and depression. However, the mechanistic bases of CBD action are unclear. Here we investigate the potential involvement of hippocampal neurogenesis in the anxiolytic effect of CBD in mice subjected to 14 d chronic unpredictable stress (CUS). Repeated administration of CBD (30 mg/kg i.p., 2 h after each daily stressor) increased hippocampal progenitor proliferation and neurogenesis in wild-type mice. Ganciclovir administration to GFAP-thymidine kinase (GFAP-TK) transgenic mice, which express thymidine kinase in adult neural progenitor cells, abrogated CBD-induced hippocampal neurogenesis....
Read More

The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling

We have recently reported that in bone the cannabinoid CB1 receptor is present in sympathetic terminals. Here we show that traumatic brain injury (TBI), which in humans enhances peripheral osteogenesis and fracture healing, acutely stimulates bone formation in a distant skeletal site. At this site we demonstrate i) a high level of the main endocannabinoid, 2-arachidonoylglycerol (2-AG), and expression of diacylglycerol lipases, enzymes essential for 2-AG synthesis; ii) that the TBIinduced increase in bone formation is preceded by elevation of the 2-AG and a decrease in norepinephrine (NE) levels. The TBI stimulation of bone formation was absent in CB1-null mice. In wild-type animals it...
Read More

The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance

During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the...
Read More

The Endocannabinoid System A New Target for the Regulation of Energy Balance and Metabolism

Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated...
Read More

The endocannabinoid system and emotional processing: A pharmacological fMRI study with Δ9-tetrahydrocannabinol

Various psychiatric disorders such as major depression are associated with abnormalities in emotional processing. Evidence indicating involvement of the endocannabinoid system in emotional processing, and thus potentially in related abnormalities, is increasing. In the present study, we examined the role of the endocannabinoid system in processing of stimuli with a positive and negative emotional content in healthy volunteers. A pharmacological functional magnetic resonance imaging (fMRI) study was conducted with a placebo-controlled, cross-over design, investigating effects of the endocannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function related to emotional processing in 11 healthy subjects. Performance and brain activity during matching of stimuli with a negative (‘fearful...
Read More

The endocannabinoid system and migraine

The recently discovered endocannabinoid system (ECS), which includes endocannabinoids and the proteins that metabolize and bind them, has been implicated in multiple regulatory functions both in health and disease. Several studies have suggested that ECS is centrally and peripherally involved in the processing of pain signals. This finding is corroborated by the evidence that endocannabinoids inhibit, through a cannabinoid type-1 receptor (CB1R)-dependent retrograde mechanism, the release of neurotransmitters controlling nociceptive inputs and that the levels of these lipids are high in those regions (such as sensory terminals, skin, dorsal root ganglia) known to be involved in transmission and modulation of pain signals. In this...
Read More

The Endocannabinoid System Is Dysregulated in Multiple Sclerosis and in Experimental Autoimmune Encephalomyelitis

The ability of cannabinoids to modulate both inflammatory and degenerative neuronal damage prompted investigations on the potential benefits of such compounds in multiple sclerosis (MS)and in animal models of this disorder. Here we measured endocannabinoid levels, metabolism and binding, and physiological activities in 26 patients with MS (17 females, aged 19­43 years),25 healthy controls and in mice with experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS. Our results show that MS and EAE are associated with significant alterations of the endocannabinoid system. We found that anandamide (AEA),but not 2­arachidonoylglycerol (2­AG), was increased in the CSF of relapsing MS patients. AEA concentrations were also...
Read More

The Endocannabinoid System, Cannabinoids, and Pain

Abstract The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors) and in the periphery (primarily but not exclusively CB2 receptors) are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its...
Read More
« Previous 1 … 9 10 11 12 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.