Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • ∆9-tetrahydrocannabinol (THC), Cannabinoid receptor 1 (CB1), Cannabinoid receptor 2 (CB2), Cannabinoid/s
Loading...

Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors

ABSTRACT Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (−)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
Read More

Antipsychotic potential of the type 1 cannabinoid receptor positive allosteric modulator GAT211: preclinical in vitro and in vivo studies

Please use this link to access this publication. Abstract Rationale Antipsychotics help alleviate the positive symptoms associated with schizophrenia; however, their debilitating side effects have spurred the search for better treatment options. Novel compounds can be screened for antipsychotic potential in neuronal cell cultures and following acute N-methyl-D-aspartate (NMDA) receptor blockade with non-competitive antagonists such as MK-801 in rodent behavioral models. Given the known interactions between NMDA receptors and type 1 cannabinoid receptors (CB1R), compounds that modulate CB1Rs may have therapeutic potential for schizophrenia. Objectives This study assessed whether the CB1R positive allosteric modulator GAT211, when compared to ∆9-tetrahydrocannabinol (THC), has potential to reduce...
Read More

∆9-tetrahydrocannabinol self-administration induces cell-type specific adaptations in the nucleus accumbens core

Abstract Drugs of abuse induce cell type specific adaptations in D1- and D2-medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore), that can bias signaling towards D1-MSNs and enhance relapse vulnerability. Whether ∆9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC+cannabidiol (THC+CBD). After extinction training spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC+CBD induced a loss of large spine heads in D1- but not D2-MSNs and commensurate reductions in glutamate synaptic transmission. Also, presynaptic CB1R function was impaired selectively at...
Read More

Lateral habenula cannabinoid CB1 receptor involvement in drug-associated impulsive behavior

Please use this link to access this publication. Abstract Animal and human studies show that cannabis or its derivatives can increase relapse to cocaine seeking following withdrawal. Moreover, cannabis use in humans is associated with impulse control deficits and animal studies implicate endogenous cannabinoids (eCB) in several impulsivity constructs. However, the brain areas where cannabinoids might control impulsivity or cocaine seeking are largely unknown. Here, we assess Lateral Habenula (LHb) involvement on performance in the 5-choice serial reaction time task (5CSRTT) in rats and investigate whether LHb cannabinoid CB1 receptors (CB1R) are involved in these effects. Systemic cocaine increased premature responding, a measure of impulsivity, at a dose (5 mg/kg) that did not...
Read More

Dissecting the role of CB1 and CB2 receptors in cannabinoid reward versus aversion using transgenic CB1- and CB2-knockout mice

Please use this link to access this publication. Abstract Cannabinoids produce both rewarding and aversive effects in humans and experimental animals. However, the mechanisms underlying these conflicting findings are unclear. Here we examined the potential involvement of CB1 and CB2 receptors in cannabinoid action using transgenic CB1-knockout (CB1-KO) and CB2-knockout (CB2-KO) mice. We found that Δ9-tetrahydrocannabinol (Δ9-THC) induced conditioned place preference at a low dose (1 mg/kg) in WT mice that was attenuated by deletion of the CB1 receptor. At 5 mg/kg, no subjective effects of Δ9-THC were detected in WT mice, but CB1-KO mice exhibited a trend towards place aversion and CB2-KO mice developed significant place preferences. This data suggests that activation of the CB1 receptor...
Read More

Impairment of Synaptic Plasticity by Cannabis, Δ9-THC, and Synthetic Cannabinoids

Abstract The ability of neurons to dynamically and flexibly encode synaptic inputs via short- and long-term plasticity is critical to an organism's ability to learn and adapt to the environment. Whereas synaptic plasticity may be encoded by pre- or postsynaptic mechanisms, current evidence suggests that optimization of learning requires both forms of plasticity. Endogenous cannabinoids (eCBs) play critical roles in modulating synaptic transmission via activation of cannabinoid CB1 receptors (CB1Rs) in many central nervous system (CNS) regions, and the eCB system has been implicated, either directly or indirectly, in several forms of synaptic plasticity. Because of this, perturbations within the eCB signaling system can...
Read More

THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner

Abstract Glioblastoma (GBM) is the most frequent malignant tumor of the central nervous system in humans with a median survival time of less than 15 months. ∆9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best-characterized components of Cannabis sativa plants with modulating effects on cannabinoid receptors 1 and 2 (CB1 and CB2) and on orphan receptors such as GPR18 or GPR55. Previous studies have demonstrated anti-tumorigenic effects of THC and CBD in several tumor entities including GBM, mostly mediated via CB1 or CB2. In this study, we investigated the non-CB1/CB2 effects of THC on the cell cycle of GBM cells isolated from human tumor samples....
Read More

Neuroprotective Effects of Cannabidiol but Not Δ9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids

Abstract (1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by...
Read More

Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders

Abstract Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is...
Read More

Could Cannabidiol Be a Treatment for Coronavirus Disease-19-Related Anxiety

Please use this link to access this publication. Abstract Coronavirus disease-19 (COVID-19)-related anxiety and post-traumatic stress symptoms (PTSS) or post-traumatic stress disorder (PTSD) are likely to be a significant long-term issue emerging from the current pandemic. We hypothesize that cannabidiol (CBD), a chemical isolated from Cannabis sativa with reported anxiolytic properties, could be a therapeutic option for the treatment of COVID-19-related anxiety disorders. In the global over-the-counter CBD market, anxiety, stress, depression, and sleep disorders are consistently the top reasons people use CBD. In small randomized controlled clinical trials, CBD (300–800 mg) reduces anxiety in healthy volunteers, patients with social anxiety disorder, those at clinical...
Read More
« Previous 1 2 3 4 5 … 18 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.