Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Cannabinoid receptor 1 (CB1), Cannabinoid receptor 2 (CB2), Endogenous cannabinoid agonist, inflammation, lipopolysaccharide induced edema, neuropathic pain
Loading...

The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects

Abstract Although Δ(9)-tetrahydrocannabinol (THC) and other mixed CB(1)/CB(2) receptor agonists are well established to elicit antinociceptive effects, their psychomimetic actions and potential for abuse have dampened enthusiasm for their therapeutic development. Conversely, CB(2) receptor-selective agonists have been shown to reduce pain and inflammation, without eliciting apparent cannabinoid behavioral effects. In the present study, we developed a novel ethyl sulfonamide THC analog, O-3223, and compared its pharmacological effects to those of the potent, mixed CB(1)/CB(2) receptor agonist, CP55,940, in a battery of preclinical pain models. Competitive cannabinoid receptor binding experiments revealed that O-3223 was approximately 80-fold more selective for CB(2) than CB(1) receptors. Additionally, O-3223...
Read More

The Endocannabinoid System A New Target for the Regulation of Energy Balance and Metabolism

Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated...
Read More

The endocannabinoid system drives neural progenitor proliferation

The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is...
Read More

The Endogenous Cannabinoid System and Its Role in Nociceptive Behavior

Abstract The analgesic properties of exogenous cannabinoids have been recognized for many years and suggest a regulatory role for the endogenous cannabinoid ("endocannabinoid") system in mammalian nociceptive pathways. The endocannabinoid system includes: (1) at least two families of lipid signaling molecules, the N-acyl ethanolamines (e.g., anandamide) and the monoacylglycerols (e.g., 2-arachidonoyl glycerol); (2) multiple enzymes involved in the biosynthesis and degradation of these lipids, including the integral membrane enzyme fatty acid amide hydrolase; and (3) two G-protein coupled receptors, CB1 and CB2, which are primarily localized to the nervous system and immune system, respectively. Here, we review recent genetic, behavioral, and pharmacological studies that...
Read More

The Expression Level of CB1 and CB2 Receptors Determines Their Efficacy at Inducing Apoptosis in Astrocytomas

Background: Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB1 and CB2 receptors mediate this therapeutic effect is unclear. Principal Findings: We generated astrocytoma subclones that express set levels of CB1 and CB2, and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB1, CB2 and AKT, but still through a mechanism involving ERK1/2. Significance: The high...
Read More

The Role of Endocannabinoid Signaling in the Molecular Mechanisms of Neurodegeneration in Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of progressive neurodegenerative disease characterized by cognitive impairment and mental disorders. The actual cause and cascade of events in the progression of this pathology is not fully determined. AD is multifaceted in nature and is linked to different multiple mechanisms in the brain. This aspect is related to the lack of efficacious therapies that could slow down or hinder the disease onset/progression. The ideal treatment for AD should be able to modulate the disease through multiple mechanisms rather than targeting a single dysregulated pathway. Recently, the endocannabinoid system emerged as novel potential therapeutic target to treat...
Read More

The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice

Exogenous cannabinoids affect multiple hormonal systems including the hypothalamo-pituitary-adrenocortical (HPA) axis. These data suggest that endogenous cannabinoids are also involved in the HPA control; however, the mechanisms underlying this control are poorly understood. We assessed the role of endogenous cannabinoids in the regulation of the HPA-axis by studying CB1 receptor knockout (KO) and wild type (WT) mice. Basal and novelty stress-induced plasma levels of adrenocorticotropin (ACTH) and corticosterone were higher in CB1-KO than in WT mice. We investigated the involvement of the pituitary in the hormonal effects of CB1 gene disruption by studying the in vitro release of ACTH from anterior pituitary fragments using...
Read More

The role of the endocannabinoid system in eating disorders: pharmacological implications

The endocannabinoid (eCB) system is a widespread intercellular signalling mechanism that plays a critical role in body homoeostasis. It is located in key points involved in food intake and energy expenditure, coordinating all the players involved in energy balance. As such, it has come to be seen as an interesting target for the management of diseases characterized by an imbalanced energy homoeostasis, such as obesity and eating disorders. The aetiology of eating disorders and the molecular systems involved are still largely a mystery. Research has focused on brain circuits where the eCB system plays an important role, such as those related to feeding behaviour...
Read More

The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors

The endocannabinoid 2-arachidonoylglycerol (2-AG) is a lipid mediator involved in various physiological processes. In response to neural activity, 2-AG is synthesized post-synaptically, then activates pre-synaptic cannabinoid CB1 receptors (CB1Rs) in a retrograde manner, resulting in transient and longlasting reduction of neurotransmitter release. The signalling competence of 2-AG is tightly regulated by the balanced action between ‘on demand’ biosynthesis and degradation. We review recent research on monoacylglycerol lipase (MAGL), ABHD6 and ABHD12, three serine hydrolases that together account for approx. 99% of brain 2-AG hydrolase activity. MAGL is responsible for approx. 85% of 2-AG hydrolysis and colocalizes with CB1R in axon terminals. It is therefore...
Read More

The therapeutic potential of novel cannabinoid receptors

Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB1 receptors and of immune responses through the activation of CB2 receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB1 and/or CB2 receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB1 and/or CB2 receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in...
Read More
« Previous 1 … 15 16 17

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.