Skip to the content
  • 719-347-5400
  • [email protected]
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Donate
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Skeletal System, Sports
Loading...

Role of cannabinoids in the regulation of bone remodeling

The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodeling.These studies showed that endogenous cannabinoid ligands, cannabinoid receptors, and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the...
Read More

Protective Effects of Cannabidiol on Lesion-Induced Intervertebral Disc Degeneration

Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously...
Read More

Peripheral cannabinoid receptor, CB2, regulates bone mass

The endogenous cannabinoids bind to and activate two G proteincoupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2 / phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming...
Read More

Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone

Cnr2 is one of two cannabinoid receptors known to regulate bone metabolism. Here, we compared the whole bone properties of femora and tibiae from three-month-old Cnr2−/− mice with wild-type controls using a C57BL/6 background. Bending stiffness was measured by three-point bending. The elastic modulus, density and mineral content were measured using ultrasound, Archimedes’ principle and ashing. Micro-CT was used to measure the second moment of area, inner and outer perimeters of the cortical shaft and trabecular parameters. Deleting Cnr2 increased the bending stiffness by increasing the second moment of area. Bone from affected male mice had a greater modulus than controls, although no difference...
Read More

Cannabinoids and the skeleton: From marijuana to reversal of bone loss

The active component of marijuana, D9 -tetrahydrocannabinol, activates the CB1 and CB2 cannabinoid receptors, thus mimicking the action of endogenous cannabinoids. CB1 is predominantly neuronal and mediates the cannabinoid psychotropic effects. CB2 is predominantly expressed in peripheral tissues, mainly in pathological conditions. So far the main endocannabinoids, anandamide and 2-arachidonoylglycerol, have been found in bone at ‘brain’ levels. The CB1 receptor is present mainly in skeletal sympathetic nerve terminals, thus regulating the adrenergic tonic restrain of bone formation. CB2 is expressed in osteoblasts and osteoclasts, stimulates bone formation, and inhibits bone resorption. Because low bone mass is the only spontaneous phenotype so far reported...
Read More

Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro

BACKGROUND AND PURPOSE Both CB1 and CB2 cannabinoid receptors have been shown to play a role in bone metabolism. Crucially, previous studies have focussed on the effects of cannabinoid ligands in murine bone cells. This study aimed to investigate the effects of cannabinoids on human bone cells in vitro. EXPERIMENTAL APPROACH Quantitative RT-PCR was used to determine expression of cannabinoid receptors and liquid chromatography-electrospray ionization tandem mass spectrometry was used to determine the presence of endocannabinoids in human bone cells. The effect of cannabinoids on human osteoclast formation, polarization and resorption was determined by assessing the number of cells expressing avb3 or with F-actin...
Read More

Cannabinoid receptors and the regulation of bone mass

A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and 2-arachidonoylglycerol and express CB2 cannabinoid receptors. Although CB2 has been implicated in pathological processes in the central nervous system and peripheral tissues, the skeleton appears as the main system physiologically regulated by CB2. CB2-deficient mice show a markedly accelerated age-related bone loss and the CNR2 gene (encoding CB2) in women is associated with low bone mineral density. The activation of CB2 attenuates ovariectomy-induced bone loss...
Read More
« Previous 1 2

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • [email protected]

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.