Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Endocannabinoid System (ECS), Liver
Loading...

Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes

Aims: Cannabidiol (CBD), one of the major constituents in marijuana, has been shown to be extensively metabolized by experimental animals and humans. However, human hepatic enzymes responsible for the CBD metabolism remain to be elucidated. In this study, we examined in vitro metabolism of CBD with human liver microsomes (HLMs) to clarify cytochrome P450 (CYP) isoforms involved in the CBD oxidations. Main methods: Oxidations of CBD in HLMs and recombinant human CYP enzymes were analyzed by gas chromatography/mass spectrometry. Key findings: CBD was metabolized by pooled HLMs to eight monohydroxylated metabolites (6α-OH-, 6β-OH-, 7-OH-, 1″-OH-, 2″-OH-, 3″-OH-, 4″-OH-, and 5″-OH-CBDs). Among these metabolites, 6α-OH-,...
Read More

Immunohistochemical analysis of cannabinoid receptor 1 expression in steatotic rat livers

The primary aim of the present study was to determine the expression levels of cannabinoid receptor type 1 (CB1) in steatotic rat livers. The secondary aim was to clarify whether steatosis and inflammation are more marked in areas with increased CB1 overexpression. For ethical and economic reasons, the present study investigated tissue from archived liver blocks, which were obtained from 38 rats that had been euthanized during the course of previous research at the Karolinska Institute of the Karolinska University Hospital (Stockholm, Sweden) and Lund University (Malmö, Sweden). Liver tissue fixed in formalin and embedded in paraffin was used that had been sourced from...
Read More

Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?

Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?. Am J Physiol Endocrinol Metab 307: E1–E13, 2014. First published May 6, 2014; doi:10.1152/ajpendo.00100.2014.—The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the...
Read More

Modulating the endocannabinoid system in human health and disease: successes and failures

The discovery of the endocannabinoid system (ECS; comprising of G-protein coupled cannabinoid 1 and 2 receptors, their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, triggered an avalanche of experimental studies that have implicated the ECS in a growing number of physiological/pathological functions. They also suggested that modulating ECS activity holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders, obesity/metabolic syndrome, cachexia, chemotherapy-induced nausea and vomiting, tissue injury and pain, among others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally restricted CB1/2 agonists and inhibitors of the endocannabinoid...
Read More

Neuropharmacology of the Endocannabinoid Signaling System-Molecular Mechanisms, Biological Actions and Synaptic Plasticity

The endocannabinoid signaling system is composed of the cannabinoid receptors; their endogenous ligands, the endocannabinoids; the enzymes that produce and inactivate the endocannabinoids; and the endocannabinoid transporters. The endocannabinoids are a new family of lipidic signal mediators, which includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. Endocannabinoids signal through the same cell surface receptors that are targeted by 9 -tetrahydrocannabinol (9 -THC), the active principles of cannabis sativa preparations like hashish and marijuana. The biosynthetic pathways for the synthesis and release of endocannabinoids are still rather uncertain. Unlike neurotransmitter molecules that are typically held in vesicles before synaptic release, endocannabinoids are synthesized...
Read More

Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation

Cannabinoids, the active components of marijuana and their endogenous counterparts, act on the brain and many other organs through the widely expressed CB1 cannabinoid receptor. In contrast, the CB2 cannabinoid receptor is abundant in the immune system and shows a restricted expression pattern in brain cells. CB2-selective agonists are, therefore, very attractive therapeutic agents as they do not cause CB1-mediated psychoactive effects. CB2 receptor expression in brain has been partially examined in differentiated cells, while its presence and function in neural progenitor cells remain unknown. Here we show that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from...
Read More

Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol

Increasing interest in the biology, chemistry, pharmacology, and toxicology of cannabinoids and in the development of cannabinoid medications necessitates an understanding of cannabinoid pharmacokinetics and disposition into biological fluids and tissues. A drug's pharmacokinetics determines the onset, magnitude, and duration of its pharmacodynamic effects. This review of cannabinoid pharmacokinetics encompasses absorption following diverse routes of administration and from different drug formulations, distribution of analytes throughout the body, metabolism by different tissues and organs, elimination from the body in the feces, urine, sweat, oral fluid, and hair, and how these processes change over time. Cannabinoid pharmacokinetic research has been especially challenging due to low analyte...
Read More

Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons

To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions. We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks. Interneurons with features typical of basket cells showed a selective, intense staining for CB1 in all hippocampal subfields and layers. Most of them (85.6%) contained cholecystokinin (CCK), which corresponded to 96.9% of all CCK-positive interneurons, whereas only 4.6% of the parvalbumin (PV)-containing basket cells expressed CB1. Accordingly, electron microscopy revealed that CB1-immunoreactive...
Read More

Recent advances in cannabinoid receptor agonists and antagonists

Abstract This review is an overview of the recent advances in cannabinoid chemistry with a special emphasis on the patent literature. The term cannabinoid includes analogues of the natural components of cannabis, endocannabinoids and a wide array of chemical structures such as 1,5-diarylpyrazoles, indoles, quinolines and arylsulphonamide derivatives capable of acting as cannabinoid receptor agonists and antagonists. These receptors, discovered in the early nineties, seem to be involved in different biochemical processes and thus represent interesting therapeutic targets for drug research.
Read More

Relationships between eicosanoids and cannabinoids: Are eicosanoids cannabimimetic agents?

Read More
« Previous 1 … 7 8 9 10 11 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.