Skip to the content
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Research
    • Research Library
    • Participate
      • Long-Term CBD Study
      • Observational Research Registry
      • Women’s Veteran Study
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Locate a Healthcare Professional
      • Medical Cannabis Cards
      • Printable Resources
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Events
      • Book Club
      • Virtual Support Groups
    • Merch Shop
  • Blog
    • Cannabis Education
    • Client Stories
  • About
    • Who We Are
    • In the News
    • Our Supporters
    • Financials
  • Contact Us
    • Call or Email
    • Request an Appointment
    • Volunteer
  • Donate
  • Register
  • Login
  • Brain Function, HIV
Loading...

Microstructural brain abnormalities in HIV+ individuals with or without chronic marijuana use

Abstract Objective Cognitive deficits and microstructural brain abnormalities are well documented in HIV-positive individuals (HIV+). This study evaluated whether chronic marijuana (MJ) use contributes to additional cognitive deficits or brain microstructural abnormalities that may reflect neuroinflammation or neuronal injury in HIV+. Method Using a 2 × 2 design, 44 HIV+ participants [23 minimal/no MJ users (HIV+), 21 chronic active MJ users (HIV + MJ)] were compared to 46 seronegative participants [24 minimal/no MJ users (SN) and 22 chronic MJ users (SN + MJ)] on neuropsychological performance (7 cognitive domains) and diffusion tensor imaging metrics, using an automated atlas to assess fractional anisotropy (FA), axial...
Read More

Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus

Please use this link to access this publication. Abstract Use of cannabidiol (CBD), the most abundant non-psychoactive compound found in cannabis (Cannabis sativa), has recently increased as a result of widespread availability of CBD-containing products. CBD is FDA-approved for the treatment of epilepsy and exhibits anxiolytic, antipsychotic, prosocial, and other behavioral effects in animal studies and clinical trials, however, the underlying mechanisms governing these phenotypes are still being elucidated. The epigenome, particularly DNA methylation, is responsive to environmental input and can govern persistent patterns of gene regulation affecting phenotype across the life course. In order to understand the epigenomic activity of cannabidiol exposure in...
Read More

Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease

Abstract Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G...
Read More

Different Effects of Cannabis Abuse on Adolescent and Adult Brain

Abstract Cannabis abuse is a common phenomenon among adolescents. The dominant psychoactive substance in Cannabis sativa is tetrahydrocannabinol (THC). However, in the past 40 years the content of the psychoactive ingredient THC in most of the preparations is not constant but has increased due to other breeding and culturing conditions. THC acts as the endocannabinoids at CB1 and CB2 receptors but pharmacologically can be described as a partial (not a pure) agonist. Recent evidence shows that activation of the CB1 receptor by THC can diminish the production of neuronal growth factor in neurons and affect other signalling cascades involved in synapsis formation. Since these factors play...
Read More

CBD Effects on TRPV1 Signaling Pathways in Cultured DRG Neurons

Abstract Introduction Cannabidiol (CBD) is reported to produce pain relief, but the clinically relevant cellular and molecular mechanisms remain uncertain. The TRPV1 receptor integrates noxious stimuli and plays a key role in pain signaling. Hence, we conducted in vitro studies, to elucidate the efficacy and mechanisms of CBD for inhibiting neuronal hypersensitivity in cultured rat sensory neurons, following activation of TRPV1. Methods Adult rat dorsal root ganglion (DRG) neurons were cultured and supplemented with the neurotrophic factors NGF and GDNF, in an established model of neuronal hypersensitivity. Neurons were stimulated with CBD (Adven 150, EMMAC Life Sciences) at 1, 10, 100 nMol/L and 1,...
Read More

Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-κB-dependent signaling and glucose consumption

Please use this link to access this publication. Abstract We used mouse microglial cells in culture activated by lipopolysaccharide (LPS, 10 ng/ml) to study the anti-inflammatory potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis. Under LPS stimulation, CBD (1–10 μM) potently inhibited the release of prototypical proinflammatory cytokines (TNF-α and IL-1β) and that of glutamate, a noncytokine mediator of inflammation. The effects of CBD were predominantly receptor-independent and only marginally blunted by blockade of CB2 receptors. We established that CBD inhibited a mechanism involving, sequentially, NADPH oxidase-mediated ROS production and NF-κB-dependent signaling events. In line with these observations, active concentrations of CBD...
Read More

Potency Assessment of CBD Oils by Their Effects on Cell Signaling Pathways

Abstract This study used nanofluidic protein posttranslational modification (PTM) profiling to measure the effects of six cannabidiol (CBD) oils and isolated CBD on the signaling pathways of a cultured SH-SY5Y neuronal cell line. Chemical composition analysis revealed that all CBD oils met the label claims and legal regulatory limit regarding the CBD and tetrahydrocannabinol (THC) contents, respectively. Isolated CBD was cytotoxic, with an effective concentration (EC50) of 40 µM. In contrast, the CBD oils had no effect on cell viability at CBD concentrations exceeding 1.2 mM. Interestingly, only an unadulterated CBD oil had strong and statistically significant suppressive effects on the pI3K/Akt/mTOR signaling pathway...
Read More

THC Exposure is Reflected in the Microstructure of the Cerebral Cortex and Amygdala of Young Adults

Abstract The endocannabinoid system serves a critical role in homeostatic regulation through its influence on processes underlying appetite, pain, reward, and stress, and cannabis has long been used for the related modulatory effects it provides through tetrahydrocannabinol (THC). We investigated how THC exposure relates to tissue microstructure of the cerebral cortex and subcortical nuclei using computational modeling of diffusion magnetic resonance imaging data in a large cohort of young adults from the Human Connectome Project. We report strong associations between biospecimen-defined THC exposure and microstructure parameters in discrete gray matter brain areas, including frontoinsular cortex, ventromedial prefrontal cortex, and the lateral amygdala subfields, with...
Read More

Seizure and Interictal Electroencephalographic (EEG) Changes with Cannabinoid Concentrate Use

Abstract Patient: Female, 17-year-old Final Diagnosis: Drug toxicity Symptoms: Seizure Medication: — Clinical Procedure: — Specialty: Neurology Objective: Unusual clinical course Background: The electroencephalographic (EEG) findings associated with tetrahydrocannabinol (THC) use, particularly in concentrated form, are not well-described, despite the current widespread availability of these products. There is a lack of prior research describing the EEG findings in adolescent cannabis users, and the effects of THC on the seizure threshold have been variably reported. Case Report: A 17-year-old girl with no prior history of seizures or known seizure risk factors presented to an Emergency Department with acutely abnormal behavior in the setting of daily...
Read More

∆9-tetrahydrocannabinol self-administration induces cell-type specific adaptations in the nucleus accumbens core

Abstract Drugs of abuse induce cell type specific adaptations in D1- and D2-medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore), that can bias signaling towards D1-MSNs and enhance relapse vulnerability. Whether ∆9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC+cannabidiol (THC+CBD). After extinction training spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC+CBD induced a loss of large spine heads in D1- but not D2-MSNs and commensurate reductions in glutamate synaptic transmission. Also, presynaptic CB1R function was impaired selectively at...
Read More
« Previous 1 2 3 4 5 6 … 12 Next »

REGISTER WITH RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • PO Box 15224, Colorado Springs, CO 80935
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2024 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer

Open the following in new tabs if you:

If you are already a user: Client Login

If you are not, then register: Client Registration

Once Logged in, click below to refresh the page.