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Abstract

Lower respiratory infections predominantly affect children under five and the elderly,
with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the
most common pathogens. The COVID-19 pandemic has posed significant global public
health challenges. While vaccination remains crucial, its efficacy is limited, highlighting
the need for complementary approaches to mitigate immune hyperactivation in severe
COVID-19 cases. Medicinal plants like Cannabis sativa show therapeutic potential, with
over 85% of SARS-CoV-2-infected patients in China receiving traditional herbal treatments.
This review explores the antiviral applications of cannabis and its bioactive compounds,
particularly against SARS-CoV-2, while evaluating their pharmacological and food indus-
try potential. Cannabis contains over 100 cannabinoids, terpenes, flavonoids, and fatty
acids. Cannabinoids may block viral entry, modulate immune responses (e.g., suppressing
pro-inflammatory cytokines via CB2/PPARYy activation), and alleviate COVID-19-related
psychological stress. There are several challenges with pharmacological and food applica-
tions of cannabinoids, including clinical validation of cannabinoids for COVID-19 treatment
and optimizing cannabinoid solubility /bioavailability for functional foods. However, rising
demand for health-focused products presents market opportunities. Genetic engineering to
enhance cannabinoid yields and integrated pharmacological studies are needed to unlock
cannabis’s full potential in drug discovery and nutraceuticals. Cannabis-derived com-
pounds hold promise for antiviral therapies and functional ingredients, though further
research is essential to ensure safety and efficacy.

Keywords: cannabinoids; COVID-19/SARS-CoV-2; pharmacological and food applications;
challenges and prospect

1. Introduction

Lower respiratory tract infections are more common in children under the age of
five and the elderly. Influenza and respiratory syncytial virus (RSV), including SARS-
CoV-2, are the most frequent viruses that cause infections with a viral origin [1]. Since
2020, the coronavirus disease 2019 (COVID-19) pandemic has posed a significant danger
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to worldwide public health. As the COVID-19 pandemic showed, respiratory infections
have serious health repercussions. As the number of individuals suffering from respiratory
disorders rises, so does the demand for alternative substances that may be utilized to
prevent and treat them. Vaccination efficiency is limited due to the virus’s significant
genetic diversity. Despite the fact that vaccine development has progressed significantly, a
method to reduce immune overactivation in severe COVID-19 patients is still required.

SARS-CoV-2 was initially isolated to China, but it swiftly spread across the world.
Since its outbreak, it has killed over six million people all throughout the world. Cases of
SARS-CoV-2 are usually asymptomatic or moderate. However, in some patients, SARS-
CoV-2 can cause major health problems as a result of cytokine storms, which are de-
fined by an uncontrollable immune response and an overproduction of pro-inflammatory
cytokines [2,3].

The use of corticosteroids and hydroxychloroquine, among other drugs, to treat
COVID-19 is not always successful. As a result, it is critical to investigate new therapeutic
possibilities, such as natural products, for preventing and controlling SARS-CoV-2. Medici-
nal herbs and natural products have considerable potential in the fight against diseases.
More than 85 percent of SARS-CoV-2 infected patients in China have received traditional
Chinese medicine treatments, according to a recent publication, and the formulations and
natural ingredients employed have recently been examined [4]. Cannabinoids could be
one of these choices, considering their anti-inflammatory and antioxidant effects, as well
as their ability to maintain the balance between a viral infection and a host’s immune
system [2].

For almost 5000 years, bast fiber crops, such as industry hemp (Cannabis sativa) of the
Cannabaceae family, have been domesticated and widely employed in herbal medicines,
textiles, and construction materials [5]. According to their ratios of cannabidiol (CBD) and
9-tetrahydrocannabinol (THC), cannabis crops can be categorized into three subspecies:
Cannabis sativa, Cannabis indica, and Cannabis ruderalis [6]. Cannabis sativa, sometimes known
as hemp or cannabis, is a plant that originated in Central Asia, spread to the Middle East
and Europe, and is now extensively dispersed in temperate and tropical locations around
the world [7] (Figure 1).
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Figure 1. Origin and geographical spread of cannabis species worldwide (A), and main production
areas in China (B). Red line indicates cannabis is cultivated sporadically along the Yellow River [7].
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Cannabis sativa is a dioecious annual plant that contains a high variety of secondary
metabolites including phytocannabinoids, polyphenols, and terpenoids, all of which have
antimicrobial, anti-inflammatory, and neuromodulatory properties [8]. These compounds
are commonly employed as scents, food additives, and natural pesticides, although they
are primarily a source of medications [9]. Cannabis was used to treat various diseases such
as inflammatory disorder and malaria since the Han dynasty in China. Cannabis has been
used to treat a variety of medical ailments in contemporary times, including pain relief,
nausea, and intestinal inflammation [5]. Due to the entourage effect and cannabis’s ability
to regulate immunological homeostasis, it has recently been employed as a supplemental
therapy for cancer patients [10]. While much is known about cannabis’s neuromodulatory
functions, little is known about its potential antiviral mechanisms.

The principal components of cannabis, as well as its antiviral actions and possible
application in food, are covered in this review study. This manuscript focuses on the
antiviral properties of cannabis and its bioactive constituents and examines how cannabis
can be used to combat SARS-CoV-2. This manuscript then reviews the potential applications
of cannabis in pharmacology and the food sector. We hope that by conducting this review,
we will be able to provide a clearer picture for food manufacturers and researchers of the
potential of using hemp polyphenols and terpenes as future functional food ingredients, as
well as information on standardizing and improving hemp processing technologies for the
efficient production of high-quality, food-safe products. Given the growing interest among
scientists on the possible health advantages of cannabinoids derived from Cannabis sativa
in food production, we want to compile the most up-to-date information on the plant’s
features, cannabinoids, and potential for use in food.

2. The Pharmacological and Bioactive Constituents in Cannabis
2.1. Cannabinoids

Cannabis has been farmed for millennia as a source of traditional medicine and textile
fiber, but it is now also being recognized as a source of a variety of secondary metabolites
with value as medicines, flavoring compounds, and fragrances due to its unique composi-
tion and structure [11-13]. Cannabinoids are chemical compounds with a wide range of
structural diversity. This diversity has been explored relatively extensively due to the strong
general interest in cannabis phytochemistry [14]. It was shown that more than 100 differ-
ent cannabinoids have been isolated from Cannabis sativa and they can be classified into
about 10 groups, including cannabigerols (CBGs), cannabichromenes (CBCs), cannabidi-
ols (CBDs), A9—trans—tetrahydrocarmabinols (A°-THCs), A8-trans—tetrahydrocannabinols
(A8-THCs), cannabicyclols (CBLs), cannabielsoins (CBEs), cannabinols (CBNs), cannabitri-
ols (CBTs), and miscellaneous cannabinoids [15] (Figure 2).

The therapeutic mechanisms of cannabinoids primarily involve interactions with
the endocannabinoid system (ECS) through receptor-dependent and independent path-
ways [16,17]. Receptor-mediated signaling pathways include CB1 receptors (abundant in
CNS), which modulate neurotransmitter release (e.g., GABA/glutamate) via Gi/o protein-
coupled inhibition of Ca?* channels, regulating pain, mood, and memory [18], and CB2
receptors (predominantly in immune cells), which suppress adenylate cyclase, reducing pro-
inflammatory cytokines and exerting immunomodulatory effects [19]. Non-receptor path-
ways include ion channel modulation, by which CBD activates TRPV4 to induce mitophagy
in glioma [20], and enzyme inhibition, by which cannabinoids inhibit FAAH/MAGL, pro-
longing endogenous anandamide activity [21]. There is a third, biased signaling, which
explains why recent cryo-EM studies reveal that CB1-(3-arrestinl complex formation trig-
gers selective anti-depressant/analgesic effects without psychoactivity, mediated by a
unique “dual-toggle switch” conformation [18]. In order to understand the interaction
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mechanisms of cannabinoids with receptors, respectively, the composition and structure of
cannabinoids and other phytochemicals are related as follows.

CBC type
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§ — l (R)-configuration
OH R0 R? -
§ =73 (S)-configuration
o Rl CBD type

Figure 2. The structures of representative cannabinoids in Cannabis sativa.

2.1.1. THC Type

THC is the major and most potent psychoactive ingredient in cannabis that causes intox-
ication. THC was discovered in 1964 and it is found in nature as A%-tetrahydrocannabinolic
acid (THCA), which is produced by decarboxylation of THCA [22]. A’-THCis a partial
agonist with high affinity for CB1 and CB2 receptors, the two G protein-coupled receptors
found in many higher vertebrates and mammalian organisms [23]. Tetrahydrocannabivarin
(A°-THCV) is a A°-THC homologue with an n-propyl (C3) side chain and a shorter aliphatic
side chain than A’-THC. The pharmacology of A’-THC has been well defined as a partial
agonist of the CB1 receptor, but A’-THCV’s pharmacology is a little more complicated [24].
Furthermore, depending on the dose and source species, A°>-THCV has variable affinity for
the CB1 receptor. A’-THCV was proven to decrease the effects of A’-THC in mice when
evaluated in the presence of A’-THC, but did not appear to behave as an inverse agonist of
CB1. However, based on its high binding affinity for CB1 but lack of functional activity,
A°-THCV was found to be a neutral antagonist [25]. A°>~THCV, on the other hand, appears
to behave as a partial agonist of the CB2 receptor, with activity being heavily regulated by
the level of receptor expression [26].

2.1.2. CBD Type

Cannabidiol (CBD) was separated first in 1940 [27] and its absolute configuration
established by synthesis of (-)-CBD as (-)-trans-(1R,6R) [28]. All of the known CBD-type
cannabinoids have trans-(1R,6R) absolute configuration and presumably also negative opti-
cal rotation. CBD is a non-psychoactive THC isomer that has a variety of pharmacological
activities due to its therapeutic potential in a variety of disease states studied in animal
models, including pain and spasticity management [29]. Cannabidivarin (CBDV) is a CBD
homologue with an n-propyl (C3) side chain. CBDV was first isolated from Cannabis sativa
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in 1969 and its optical rotation was reported as []p-139.5 [30]. In a [*H]-20 binding assay
in human Sf9 cells, CBDV exhibits a low affinity for the CB1 receptor but a high affinity for
CB2 (K; = 0.57 uM) [31].

2.1.3. CBG Type

Cannabigerol (CBG) is a monocyclic cannabinoid with a ten-carbon linear geranyl
chain and a five-carbon aliphatic side chain. The presence of a linear isoprenyl residue is a
structural feature of this molecule. CBG is a non-psychoactive phytocannabinoid that has
a low affinity for CB1 and CB2, but has high activity towards many ligand-gated cation
channels of the TRP superfamily. It works as a TRPV1 and TRPA1 agonist, as well as a
TRPMS inhibitor. Except for cannabinerolic acid, a recently discovered chemical, there are
now seven CBG-type compounds known, all of which have cis-geometry [32]. CBGA is a
precursor of CBG, which is used in the biosynthesis of other cannabinoids.

2.1.4. CBC Type

Cannabichromene (CBC) was initially isolated from Cannabis sativa in 1966, and it
belongs to a special class of cannabinoids with a benzopyran moiety at its core [33]. The
benzopyran ring of CBC has a stereocenter, and natural CBC-Cs is assumed to be racemic.
Furthermore, the C3 analog of CBC was isolated [34], and a molecule with a 4-methyl-
2-pentenyl side chain at C; was produced, which differed from the 4-methyl-3-pentenyl
side chain seen in other CBC-type compounds. The absolute configuration at Cy, on the
other hand, has yet to be defined. CBC has no psychedelic effects in humans. Because its
production relies on the decarboxylation of CBCA produced by heating, it is abundant in
dried hemp material.

2.1.5. CBL Type

In 1967, CBL was isolated and renamed cannabicyclol/cannabipinol, and the structure
was changed [35]. The name THC III was given to CBL because it was thought to have a
THC-like structure. Although a [«]p-3 was observed [36], CBL from the crude plant material
displays no evident optical rotation, and it can emerge as a result of natural irradiation in
the plant or as an artifact generated in the crude extract. Using NMR analysis of its methyl
ester and a comparison of the decarboxylation product with CBL, cannabicyclolic acid was
extracted and identified as the acid of CBL [29].

2.1.6. CBE Type

Cannabielsoin (CBE) is first mentioned in the literature in 1973 [37], albeit no details
on its structure are given. The structure and absolute configuration of CBE-C5 were
finally determined by synthesizing it from cannabidiol diacetate and comparing it to CBE
produced by the decarboxylation of natural cannabielsoin acid [38]. Due to the rarity
of their detection and/or separation from natural sources, the classification of CBE-type
compounds as natural products has been questioned [39]. On various occasions, CBE and

CBE acid have been claimed to be natural products of Cannabis sativa plant material or
hashish [40].

2.1.7. CBN and CBT Type

In the 1930s, cannabinol (CBN) was isolated from hashish for the first time [41]. CBN-
type cannabinoids are THC derivatives that have been fully aromatized. Cannabitriol (CBT)
was discovered in 1966, and its structure was discovered in 1976 [42].
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2.1.8. Other Cannabinoids

Although more than 100 phytocannabinoids have been found in hemp, the majority
of them have yet to be completely described [43]. Cannabidivarin (CBDV), cannabivarin,
cannabielsoin, cannabicyclol, cannabitriol, and cannabitriol are all terms that are used
interchangeably. CBDV is a CBD derivative that varies only in that it has a shorter side
chain than cannabidiol. Cannabivarin is a CBN homologue with a shorter side chain, also
known as cannabivarol. It is found in modest concentrations in cannabis, rarely detected in
new plants, and is primarily found in dried hemp. The oxidation of A°-THCV results in
the formation of this molecule [24,44].

Furthermore, with the rapid advancement of analysis techniques, more and more
novel phytocannabinoids are being discovered. In 2019, hemp cannabiphorol (CBDP) and
A9—tetrahydrocannabiphorol (THCP) were identified. These compounds feature seven
carbon alkyl chains, making them the first phytocannabinoids with greater than five carbon
atoms in a chain, as opposed to most cannabinoid compounds isolated from Cannabis sativa.
Tetrahydrocannabiphorol has a potential to bind to the CB1 receptor 30 times stronger than
A°-THC, according to in vitro research [45].

2.2. Terpenoids

Terpenes are responsible for hemp’s distinctive fragrance and flavor, as well as its
protective role in plants. Terpenes have acyclic or cyclic structures that emerge from
processes such as reduction, oxidation, cyclization, ring cleavage, or rearrangements within
the isoprenoid chain [46]. The monoterpenes pinene, linalool, and limonene, as well as
the bitter sesquiterpenes nerolidol, 3-caryophyllene, and caryophyllene oxide, have been
shown to have antimicrobial, antidepressant, anti-inflammatory, and anxiolytic effects in
cannabis essential oils [47]. Geographic location, weather conditions, soil type, fertilizer
use, plant age, and weather and time of day or year when cannabis is collected are all
elements that determine the essential oil composition.

2.2.1. Monoterpene

Myrcene is the plant’s most significant monoterpene and the smallest terpene in
Cannabis sativa. It has an unsubstituted acyclic monoterpene with estrogenic action, ac-
cording to studies. Myrcene activates a highly rectifying conductance that requires the
presence of TRPV1 protein to function. Internal calcium levels are extremely sensitive to
myrcene-induced currents, and they appear to rapidly inactivate in a manner that is depen-
dent on the degree of calcium buffering in the cytoplasm. Myrcene can be a productive or
non-productive ligand for TRPV1 depending on the amount of calcium in the body, which
could offer up new avenues for therapeutic treatments with TRPV1 [46].

Myrcene exhibits multiple therapeutic properties. As a key aromatic compound in
cannabis terpene profiles, it demonstrates notable analgesic and anti-inflammatory effects
by modulating prostaglandin E2 (PGE2) and cytokine pathways, potentially benefiting
chronic pain management. Its sedative properties through GABA receptor interaction may
improve sleep disorders, while its muscle relaxant effects show promise for spasticity relief.
Preclinical studies suggest myrcene enhances cannabinoid absorption by increasing blood—
brain barrier permeability, amplifying the entourage effect of THC/CBD. Antimicrobial
activity against pathogens like S. aureus has been documented in vitro [48,49]. However,
current evidence primarily derives from animal models and requires clinical validation.

2.2.2. 3-Caryophyllene

B-caryophyllene (BCP), a terpene with a spicy aroma that is easily obtained through
heat decarboxylation, is likely the most important sesquiterpene in the cannabis plant.
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The structure and characteristics of BCP were found to be similar to those of cannabinoid-
related compounds. This is the sole terpene that interacts with the body’s endocannabinoid
system (binds to the CB2 receptor preferentially). The presence of an oxygen-containing
functional group in a molecule generally boosts its antibacterial action, showing a link
between structure and biological activity [50].

B-Caryophyllene (BCP), a prominent sesquiterpene in cannabis, exhibits multifaceted
therapeutic properties through selective CB2 receptor agonism. Preclinical studies demon-
strate its potent anti-inflammatory effects by inhibiting prostaglandin E2 synthesis and
modulating cytokines like TNF-« and IL-6, suggesting applications for chronic inflam-
matory disorders such as arthritis [51]. Notably, BCP promotes white adipose tissue
browning via PPARy upregulation, improving metabolic parameters in obese mice [52].
Its neuroprotective potential is evidenced by oxidative stress reduction and microglial
activation suppression, which are relevant for neurodegenerative diseases. Antimicrobial
activity against pathogens like S. aureus and E. coli highlights broad-spectrum defensive
capabilities [53].

2.2.3. Limonene

Limonene is a minor terpene component in Cannabis sativa, along with cyclic monoter-
pene. Limonene has antiviral, antibacterial, and antihypertensive effects [54]. It can be
found in a variety of essential oil constituents from various plants, which could be due to its
precursory involvement in the formation of many monocyclic monoterpenoids. Limonene
is the source of the majority of monoterpenes with a 1-p-menthene structure, such as carveol,
carvone, x-terpineol, pulegone, and 1,8-cineole. Limonene comes in two enantiomeric
forms: Rand S. It is an optically active chemical. S limonene is commonly found in essential
oils of the Pinus and Mentha species, while R limonene is mostly found in essential oils of
citrus peels and by-products [55].

Limonene, a monoterpene abundantly found in cannabis and citrus plants, has gar-
nered significant attention for its diverse therapeutic properties. As a key component of
cannabis essential oils, limonene modulates neurotransmitter systems, increasing sero-
tonin and reducing dopamine release to exert neuroprotective and sedative effects [56]. In
oncology, preclinical studies highlight its chemopreventive potential in inhibiting tumor
proliferation pathways, though clinical evidence remains limited. Pharmacologically, it
enhances antibiotic efficacy against resistant bacteria by inhibiting efflux pumps [57]. While
existing research primarily derives from in vitro and animal models, human trials are
needed to validate these benefits.

2.3. Flavonoid

Flavonoids are the most diverse group of polyphenols, with six primary subclasses:
flavones, flavonols, flavanones, flavanols, isoflavones, and anthocyanidins. As a by-product
of the textile industry, fibrous hemp inflorescences are a source of polyphenol chemicals
with proven health-promoting qualities. Flavonoids account for around 10% of the total
chemicals found in hemp. Flavonoids can make up around 2.5% of the dry matter in hemp
leaves and inflorescences, but only trace amounts are found in the roots and seeds [44]. The
O-glycoside aglycone derivatives apigenin, luteolin, orientin, kaempferol, and quercetin,
as well as cannflavins A and B, which are methylated isoprenoid flavones specific to hemp,
are among the flavonoids isolated from flowers, leaves, and pollen [58]. Despite the fact
that flavonoid concentrations vary depending on plant variety, it was discovered that
flavone derivatives were most abundant in female inflorescences (apigenin and luteolin).
Male inflorescences have less flavonoids than female inflorescences, but they do have two
distinct flavonol compounds: quercetin-O-sophoroside and kaempferol-O-phosphoroside.
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Cannabis flavonoids, particularly unique compounds like cannflavins (e.g., cannflavin
A and B), exhibit significant therapeutic potential. These flavonoids demonstrate potent
anti-inflammatory properties by inhibiting prostaglandin E2 synthesis and modulating
cytokines like TNF-« and IL-6, offering promise for chronic inflammatory conditions such
as arthritis [59,60]. They also contribute to neuroprotection by reducing oxidative stress
and enhancing cerebral blood flow, potentially mitigating neurodegenerative diseases
like Alzheimer’s disease. Notably, preclinical studies highlight their anticancer effects,
where flavonoid derivatives (e.g., FBL-03G) suppress tumor metastasis and synergize
with radiotherapy in pancreatic cancer models [61]. Additionally, their antioxidant and
antimicrobial activities support cardiovascular health and immune modulation.

2.4. Fatty Acids

Hemp seeds have a high content of essential unsaturated fatty acids (about 80% of the
total fatty acid content), which gives them a distinctive nutritional value [62]. Hemp seed
oil typically has a 2:1 or 3:1 ratio of omega-6 to omega-3 fatty acids, which is considered
ideal for human health [63]. Linolenic acid (ALA, 18:3, n-3), which makes up more than
half of the total fatty acid composition, is among the remaining fatty acids (LA, 18:2, n-6).
Oleic acid (OA, 18:1, n-9), palmitic acid (PA, 16:0), and gamma-linolenic acid (GLA, 18:3,
n-6) are also present [64].

3. Pharmacological Mechanisms of Cannabinoid Compounds

Cannabinoid compounds have been approved for clinical application based on their
plentiful health benefits. As shown in Table 1, several drugs derived from cannabinoids
have been used for the treatment of Lennox—Gastaut syndrome, Dravet syndrome, muscle
spasticity, etc.

Table 1. Clinically approved cannabinoid medicines.

Drug Name Approval Agency Approval Time Primary Indication(s) and Mechanism
Reduces seizures in Lennox—Gastaut
sy saoy i Dt andonemd
(CBD oral solution) EMA (EU) 2019 (EMA) ; mp .
epilepsy by modulating neurotransmitter
release and ion channels
Dronabinol Anti-emetic for chemotherapy-induced
(synthetic THC) FDA (USA) 1985 nausea/vomiting; appetite stimulant for
y AIDS wasting syndrome
Nabilone FDA (USA) 1985 Treatment of chemotherapy-resistant
(synthetic cannabinoid) Health Canada nausea and vomiting
Sativex ® Relieves muscle spasticity in multiple
(THC = f ) llvex 1 EMA (EU) 2010 (Canada) sclerosis; adjunctive therapy for advanced
= L oromucosa Health Canada 2011 (EU) cancer pain by dual cannabinoid
spray) receptor modulation
™
(Nabi(l:(i:?t:t nthetic FDA (USA) 1985 (USA) Anti-emetic for chemotherapy-induced
y Health Canada 1981 (Canada) nausea/vomiting

cannabinoid analogue)

The two most studied phytocannabinoids, A9-tetrahydrocannabinol (THC) and
cannabidiol (CBD), demonstrate distinct pharmacological profiles (Table 2). Other cannabi-
noids also show evident pharmacological evidence in vitro or in vivo, although most of
them need to be approved clinically. According to the academic focus of this paper, the
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confirmed and possible pharmacological mechanisms of cannabinoid compounds related to
interventions against SARS-CoV-2 are specifically summarized. Based on these mechanisms,
the potential of pharmacological applications of cannabinoids in attenuating COVID-19
pandemic is proposed.

Table 2. Molecular formulas, structural features, medical application statuses of the main
10 cannabinoids.

Cannabinoid Name l\gglgs:ﬂ:r Structural Features Medical Applications Research Status
. Clinically
A9- Analgesic [65,66] .
Tetrahydrocannabinol Cy1H300, Antiemetic [67] (s]}s?é}rlliggni;lgc
(THC) Appetite stimulation [68] 1992, FDA
. Clinically
Cannabidiol Co HanO ﬁgsi%ci;,;gl[%aor]lt [6] CBD oral solution
(CBD) R Anti-inflammatory [71] (Ep idiolex®)
y 2018, FDA
Cannabigerol CorHarO Antibacterial [72] In vitro and in vivo
(CBG) 211732%-2 Neuroprotective [73] In vitro
Cannabichromene Anti-inflammatory [74] . ..
(CBC) Cy1Hz300; Anti-cancer [75] In vitro and in vivo
: Sedative [76] In vivo
Ca?cnglli;)n ol Cy1Hp60O Anti-oxidant defense [77] In vitro and in vivo
Antiaging [78] In vitro and in vivo
Tetrahydrocannabivarin Appetite suppressant [79] . L
(THCV) CroH260, Anticonvulsant [80] In vitro and in vivo
Cannabidivarin In vitro, in vivo, and
CBDV C19H2602 Antiepileptic [81] ongoing-clinically (GW
( ) Pharmaceuticals)
Cannabidiolic acid CoyHanO Anti-inflammatory [82] In vitro and in vivo
(CBDA) 2207304 Antiemetic [83] In vivo
Tetrahydrocannabinolic CorHanO Neuroprotective [84] In vivo
acid (THCA) 2217304 Antiproliferative [85] In vitro
Z <5
Cannabicyclol i . .. .
(CBL) Cy1Hz300; @ Potential antioxidant [86] Research ongoing
HO

3.1. Antiviral

Terpenes and terpenoids have a variety of biological and pharmacological properties,
including antiviral properties. Compounds from natural sources are of interest as possible
sources to regulate viral infection, and medicinal plants provide a variety of chemical
elements with the potential to suppress viral replication [64,87]. Since the outbreak of
COVID-19, there has been a growing interest in the use of natural chemicals to combat the
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virus [88]. The ideal therapeutic candidate would be of use for other indications, have a
positive safety profile, and have a multitargeted action able to synergistically attenuate
cytokine storm while working as an immunomodulatory rather than immunosuppressive
medicine [89]. As a result of their activity in modulating the homeostasis between immune
response and cell cytokine storm, CBD and other cannabinoids were deemed to be good
candidate agents [90,91].

The interaction of antiviral medicines with viral proteins is the initial step in their
antiviral activity. The most important phase in the viral cycle is the binding of SARS-
CoV-2’s spike protein to the human cell surface receptor angiotensin-converting enzyme
2 (ACE2) [90]. By blocking virus particles from invading human cells, cell entry in-
hibitors could prevent SARS-CoV-2 infection and shorten the course of COVID-19 infections
(Figure 3). The expression of transmembrane serine protease 2 enzyme (TMPRSS2) and
angiotensin-converting enzyme 2 (ACE2) receptors was reduced in vitro utilizing Cannabis
sativa extracts rich in CBD with a modest admixture of A’-THC on human airway epithe-
lium [92]. SARS-CoV-2 enters the host organism through the epithelium of the oral cavity
and lungs, using these receptors as entry points [90]. The ability of THC or CBD to bind
to the MP™ protease of SARS-CoV-2 and limit virus replication has been confirmed [92].
The antiviral effects of this were, however, dose dependent. When the ICsy concentration
of CBD was 1.86 £ 0.04 uM, it successfully inhibited MP™ protease, and when the ICs
concentration of CBD was 14.65 £ 0.47 uM, it effectively inhibited ACE2. THC’s ICs5 inhi-
bition concentration of MP™ protease and ACE2 was 16.23 £ 1.71 pM and 11.47 £ 3.60 uM,
respectively [93]. CBGA and CBDA were discovered to be allosteric and orthosteric ligands
for the SARS-CoV-2 spike protein, and they blocked infection of human epithelial cells by a
pseudovirus expressing the spike protein [94]. CBDA and CBGA have recently been found
to inhibit infection of the original live SARS-CoV-2 virus as well as variations of concern,
such as B.1.1.7 and B.1.351.
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Figure 3. A plausible mechanism of cannabis to inhibit SARS-CoV-2: cannabis blocks the entry of
SARS-CoV-2 through binding to a spike protein, ACE2, or complex of RBD-ACE2. The complex of
RBD-ACE2 was from the PDB database (ID:7UON).
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Many essential oils include (3-caryophyllene, which may play a significant role in their
antiviral properties. In vitro, 3-caryophyllene has a selectivity index of 140 against herpes
simplex virus type 1. The ratio of the cytotoxic concentration of the drug that reduced
viable cell numbers by 50% to the antiviral activity that inhibited plaque numbers by 50%
relative to the untreated control was used to calculate the selectivity index [64]. Based on a
bioinformatic study;, it has been found that 3-caryophyllene can bind SARS-CoV-2 spike
protein and ACE2 [95]. Following this, Gonzédlez-Maldonado et al. [88] discovered that
-caryophyllene had a particular effect in vitro on the SARS-CoV-2 spike-pseudotyped
virus. In order to better understand the anti-SARS-CoV-2 capabilities of cannabinoids,
Table 3 shows the comparative progress of research on cannabinoids, quercetin, resveratrol,
and EGCG against SARS-CoV-2 with key findings from authoritative references.

Table 3. The comparative progress of research on cannabinoids, quercetin, resveratrol, and EGCG
against SARS-CoV-2.

Compound Key Anti-COVID-19 Mechanisms Research Stage
L Inhibits viral entry by binding spike protein;
gagnék]g%()nds modulates ACE2 and cytokine storms (e.g., IL-6  Preclinical/early clinical

reduction) [96,97]

Quercetin Blocks viral proteases (3CLpro, PLpro); stabilizes = Mixed clinical trial

mast cells to reduce inflammation [98] results
R ratrol Suppresses viral replication via SIRT1 activation; In vitro and animal
esvera inhibits NLRP3 inflammasome [99] models
EGCG Binds spike protein to block viral entry; In vitro

modulates TMPRSS?2 activity [100,101]

Note: All compounds lack large-scale human trials; cannabinoids and EGCG show stronger in vitro antiviral data,
while quercetin has more preliminary clinical evidence.

3.2. Immune Regulation

Furthermore, due to phytocannabinoids” immunosuppressive properties, which can
inhibit appropriate antiviral immune responses, vigilance should be exercised [102]. T-cells,
B-cells, monocytes, and microglia are all affected by active cannabinoids, resulting in a
decrease in pro-inflammatory cytokine expression and an increase in anti-inflammatory
cytokines. Almogi-Hazan and Or have examined the role of the endocannabinoid system
(ECS), cannabinoid receptors 1 and 2, and cannabinoids in numerous physiological systems,
including immunology and diverse diseases [103]. CBD and CBN have the ability to
change the immune system’s functioning. CBD, for example, may operate as an immune
suppressor by inhibiting the activation of several immune cell types, inducing death,
and promoting regulatory cells, which in turn govern the activity of other immune cell
targets [104]. The ECS is the glue that holds everything together. Because our bodies
naturally have cannabinoid receptors, compounds contained in cannabis are recognized to
have potential effects in humans. Our bodies spontaneously create endocannabinoids when
they are needed. To induce specific responses, they alter cell activity and travel backward
through chemical synapses. The endocannabinoid system, like the immune system, is a
foundational function that the body employs to maintain biological homeostasis.

The downregulation of cAMP adenylate cyclase by CBN is known to cause immuno-
suppression by lowering intracellular levels of cyclic AMP [105]. The CBN-induced drop
in cAMP levels inhibits interleukin 2 (IL-2) production and modulates immunosuppression
via disrupting the ERK signaling pathway. CBN has been demonstrated to impede AP-1
binding to the promoter region of IL-2, resulting in immune response inhibition [106].

Furthermore, unlike THC, THCA can reduce the amount of TNF-« in culture super-
natants from LPS-induced macrophages in a dose-dependent manner. Although these
cannabinoids impair cell-mediated and humoral immunity in animal models, as well as
resistance to bacterial and viral infections [107], there is no conclusive evidence that they
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can impair immune function in humans, as measured by the number of T lymphocytes, B
lymphocytes, and macrophages, or immunoglobulin levels [108].

3.3. Anti-Inflammatory

In the SARS-CoV-2 virus, abnormal cytokine and pro-inflammatory molecule release
is linked to lung damage, multiorgan failure, and ultimately poor prognosis [109]. Hemp
extracts have long been linked to anti-inflammatory properties. One of the most important
features of CBD is its ability to reduce inflammatory responses and protect against acute
and chronic inflammation. CBD has a wide spectrum of anti-inflammatory actions, and it
can help with acute lung injuries’” unregulated cytokine production [92]. Recent advances
in inflammasome research also suggest that cannabinoids’ anti-inflammatory effects may
be mediated in part by modifying inflammasome assembly and activity, suggesting that
cannabinoids like CBD could be utilized to treat inflammatory illnesses induced by viral
infections like COVID-19 [110].

Cannabis sativa is well-known for its anti-inflammatory properties, which were pre-
viously discussed. COVID-19 causes lung inflammation, which is a serious problem.
Inflammation of human lung tissue is triggered by immune responses in severe cases of
COVID-19, leading to acute respiratory distress and failure and then causing increased
fatality. A cytokine storm is an immunological reaction to the overproduction of pro-
inflammatory cytokines [92]. Cannabinoid isolates such as CBD and THC were also studied
in humans long before the global pandemic arose as a result of the spread of SARS-CoV-2
infections [103]. CBD, in particular, has demonstrated a strong anti-inflammatory impact
via inhibiting CB2 and acting as an agonist on the peroxisome proliferator-activated recep-
tor v (PPARYy) [2]. This finding suggests that CBD could change host immune response
by activating the CB2 receptor, specifically by suppressing inflammation and modulating
immunological responses to viral infection (Figure 4).

SARS-CoV-2

Figure 4. An outline of immune signaling (left) and major inflammatory signaling (right) is shown,
annotated with the known mechanisms by which SARS-CoV-2 activates and suppresses signals
(dotted line).
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COVID-19 illness progression is frequently divided into two phases: adaptive immune
response and cytokine storm syndrome. Several cytokines, including interleukin (IL)-6 and
IL-8, as well as tumor necrosis factor alpha (TNF«), are increased in cytokine storm syn-
drome. Identified extracts of cannabis with high levels of CBD exhibited anti-inflammatory
activity in lung epithelial cells and progressed to induce polarization, phagocytosis, and
IL expression in macrophages in vitro, based on the FDA’s approval for the treatment of
children with intractable epilepsy for seizure reduction [111]. CBD has been shown to
decrease inflammation by inhibiting NLRP3/Caspase-1 response, which is initiated by SP
stimulation [112]. CBD has been shown to suppress cytokine storms, protect pulmonary
tissues, and restore inflammatory equilibrium [113].

A’-THCV (0.3 mg/kg and 1.0 mg/kg i.p.) reduced both carrageenan-induced edema
and formalin-induced pain in mouse models of acute inflammation and inflammatory pain.
When mice were given the CB2 inverse agonist 24, the inflammation was reversed, demon-
strating that CB2 regulation plays a role in A’>-THCV’s anti-inflammatory activities [26].
CBDV'’s pharmacological effect, on the other hand, could be the result of indirect control of
two important endocannabinoid receptors via modification of endocannabinoid processing
targets. Because of its high TRPA1 action, CBDV has been studied for anti-inflammatory
characteristics in models of irritable bowel disease (IBD) and ulcerative colitis (UC). CBDV
was given to animals orally and intraperitoneally at doses ranging from 0.3 to 10 mg/kg
before and after dinitrobenzenesulfonic acid-induced colonic inflammation (DNBS). CBDV
has been demonstrated to drastically reduce the weight/length ratio of the colon as a result
of inflammation and to counteract TRP1A channel overexpression. CDBV inhibited the
synthesis of pro-inflammatory cytokines including IL-6 in human colonic tissue taken from
biopsies, according to in vitro tests [114].

Furthermore, there were higher levels of cytokines in cannabis smokers’ bronchoalve-
olar lavage and epithelial brushing, including IL-6, IL-8, TNF«, and IL-10 [115]. Beji et al.
reviewed the available data on cannabinoids, viral infections, and the role of mitochondria
and came to the conclusion that cannabinoids have the potential to affect a wide range of
cell types through mitochondrial modulation, whether through receptor-specific action
or not, and that this pathway has potential implications in viral infections [116]. In pa-
tients with COVID-19, cannabis smoking or vaping may aggravate cerebrovascular and
neurological impairment [117]. Wang et al. [118] recently reported that cannabis extracts
suppressed the expression of many inflammatory mediators, including cyclooxygenase-2
(COX2), interleukin-6 (IL-6), and interleukin-8 (IL-8) (IL-8). At this moment, it is un-
known whether cannabis extracts or CBD can be utilized to treat any COVID-related health
problems [119]. Cannabinoids’ entire antiviral mechanism against SARS-CoV-2 infection
is currently unknown. As a result, thorough pharmacological research investigations
on the immunotherapeutic potential of cannabinoids against SARS-CoV-2 infection are
urgently needed.

3.4. Mental Health

Healthcare employees who work with COVID-19 patients are subjected to significant
levels of stress, as well as physical and mental exhaustion. Because of their late onset of
response and even initial worsening of symptoms, unfavorable motor and cognitive effects,
and tendency to cause drowsiness, abstinence, and symptom recurrence after withdrawal,
existing drugs are less than optimal against these symptoms [120]. The many unknowns
surrounding the COVID-19 pandemic, such as the economy’s state, work opportunities,
and a loss of connectivity, might exacerbate sadness, worry, and anxiety. CBD has shown
potential as an alternative medication for the treatment of anxiety disorders in clinical
trials [104]. CBD’s anxiolytic and anti-depressant effects have led to the suggestion that it
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could be utilized to treat the mental and physical health of Ebola patients suffering from
anxiety and emotional stress [121]. Continuing on the subject of cannabis as a medicine,
there have been claims that either smoked or ingested cannabis containing the psychoactive
component THC, and those that are natural or synthetic in origin (dronabinol), improves
the appetites of people with AIDS, increases weight gain, and lifts mood, thereby improving
quality of life.

Serotonin, opioid, and non-endocannabinoid G protein-coupled receptors (GPCR)
are all affected by CBD. Because of its anti-inflammatory effects, the medication has im-
munosuppressive and neuroprotective properties. As a result, it is also involved in CBD’s
antidepressant impact and in lowering anxiety disorders including obsessive—compulsive
disorder and post-traumatic stress disorder [122]. CBD research has revealed a lot about its
anticonvulsant properties, as indicated by the success of CBD in treating epileptic seizures,
especially in children. COVID-19 patients, like Ebola patients, may endure a variety of
psychological and social difficulties as a result of lingering chronic inflammation and au-
toimmune reactions. As a result, future randomized clinical trials to assess the efficacy
of CBD in reducing anxiety and dread related to COVID-19 infection and its effects on
people’s physical, social, and psychological well-being may be beneficial. CBD is most
commonly cited as a treatment alternative for anxiety disorders and pain, according to a
2020 study on social media information [123]. CBD has been shown in a recent study to
help health care professionals with burnout syndrome symptoms and other mental health
issues [124].

Anxiety and post-traumatic stress symptoms (PTSS) or post-traumatic stress disorder
(PTSD) linked to the COVID-19 pandemic are anticipated to be a substantial long-term
issue. Major calamities, such as epidemics, are known to cause post-traumatic stress disor-
der (PTSD). According to World Health Organization (WHO) epidemiological forecasts,
post-disaster mental health disorders vary from mild to severe distress, affecting 20-50% of
a population. Large numbers of persons with long-term anxiety, PTSD, or PTSS are antici-
pated to be triggered by the present COVID-19 epidemic [125]. According to a more recent
survey, the most common reasons for using OTC CBD were stress alleviation, relaxation,
and sleep improvement [126].

4. Functional Food Applications

CBD and terpene from hemp plants are predicted to be used as future functional food
ingredients, receiving the attention of the rising functional foods sector thanks to their great
pharmacological and nutritional benefits [127]. Hemp-based foods have a lot of potential
to become commercially successful in the functional food market. Some terpenes are GRAS
(generally recognized as safe) chemicals that can be added to meals and have been utilized
in the past. CBD’s functions, such as pain alleviation, anxiety relief, and nausea relief,
have been established in recent studies [128,129]. Consumers are pursuing healthier diets,
seeking more functional foods reinforced with functional ingredients, as the prevalence
of lifestyle-related chronic diseases rises. Furthermore, because CBD is not psychoactive,
it does not have the same addictive properties as THC. As a result, adding CBD or other
bioactive chemicals to foods or beverages as future functional food components has a lot of
potential [130].

Approximately 74 percent of the US population uses nutritional and dietary sup-
plements, with 55 percent taking them on a regular basis [131]. An appropriate diet is
critical for a fully functional immune system and has an early impact on infection risk.
Furthermore, malnutrition is common in COVID-19 patients who are elderly [132]. Hemp
seeds and hemp-based products have become increasingly popular among consumers
in recent years. Hemp seeds, hemp flour, and hemp oil are currently popular culinary
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products [127]. Cannabis flour obtained from cannabis seeds, as well as cannabinoid oils
and/or extracts, are used to make products containing cannabinoids. For example, when
hemp flour and protein concentrate were used as natural nutritional and structure-forming
agents in gluten-free starch bread, it was discovered that the presence of hemp-based
preparations significantly increased the nutritional value of the bread by adding protein, as
well as fats, minerals, and dietary fiber in the case of hemp flour. The use of hemp-based
formulations, namely protein preparation, resulted in a large increase in bread volume
with very minor changes in crumb structure, which is beneficial to both bread makers and
consumers [133]. In times of crisis such as floods, earthquakes, wars, and quarantines, vari-
ous components of the hemp plant and seed can be used as drinks, as a superb nutritional
dietary supplement, or as a dried super food. Hemp seed, hemp seed oil, hemp snacks,
and hemp protein have all been touted as high-quality, nutritionally complete foods [134].
Hemp sprouts are known for their beneficial cardiovascular and metabolic effects, and
they contain more total polyphenols, flavonoids, and flavonols than hemp seeds [135].
According to an EIHA report [136], seed production for food in the United States increased
by 92% between 2010 and 2013. Flowers and leaves used in medicine, dietary supplements,
and oils production grew by 3000% in 2013 compared to 2010. The worldwide cannabis
market was estimated to be worth USD 123.9 billion in 2019. From 2020 to 2027, the market
is predicted to increase at a 14.3% annual rate. The rising popularity of these products has
resulted in an ever-expanding product line.

The common types of cannabis-infused foods are shown in Table 4, as well as their pri-
mary ingredients, key regions where they are legally available, and authoritative references.
Data is compiled from high-impact journals (e.g., Nature Communications) and author-
itative market reports (e.g., Global Market Monitor), ensuring evidence-based accuracy.
Most products derive psychoactive effects from THC or non-psychoactive benefits from
CBD, often combined with terpenes for flavor enhancement. Industrial hemp-based foods
(e.g., oils) typically contain THC below 0.3% to comply with legal thresholds. Regions
reflect current legal frameworks, with North America (Canada, U.S.) and Europe leading in
commercialization, while Asia maintains strict prohibitions except for limited medical use.

Table 4. Main global cannabis-infused food types, key ingredients, regions of availability, and
regulatory rules.

Food Type Key Ingredients 1{{: agiilggislft; Authoritative Rules
Canada: Plain packaging,
. THC (<10 Canada, USA, child-resistant, THC content labels;
Cookies/Candy o /oke), CBD  Thailand Thailand: THC < 0.0032%
in seasonings
B Ti-llCO Kk Canada. USA Prohibited with caffeine/alcohol;
everages (CTBD mg/pkg), anada, mandatory THC/CBD labeling
Chocolate THC, CBD Canada, USA g;}r)lggl?ngg)e}:lglrﬁ health claims; bans
THC . . . .
Canada, Thailand: Requires FDA registration
Baked Goods gelrggnei {Falz%g, Thailand for commercial sales
Dietary CBD USA, Japan USA: FDA restricts therapeutic claims;
Supplements (THC < 0.3%) ’ Japan: THC-free CBD only
. Thailand: Revised THC limits for
Seasonings/Oils g%%pj%e; /O)ﬂ Thailand, EU non-retail ingredients; EU: Industrial
e hemp (THC < 0.2%)
Topical CBD isolates USA. Canada China: Bans all cannabis cosmetics;
Cosmetics (THC-free) / Canada: <1000 mg THC per package
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5. Challenges, Regulatory Issues, and Future Perspectives
5.1. Challenges and Strategies

Clearly, there are a few obstacles to overcome when it comes to applying cannabinoids
to food. The ultimate quantity of these compounds in a finished product is affected by
the proportion of each addition, but the content of THC, in particular, must not exceed
permitted limits [137]. Furthermore, only one type of cannabinoid, A9-THC, is permitted to
be used in food, with amounts ranging from 0.02 to 20 ppm [128]. Due to the variability of
cannabinoid concentration in plants, using hemp in food processing is particularly difficult.
Further research on the food matrices employed and the oils used as carriers is needed to
establish the bioavailability of cannabinoids from food [127]. However, additional proof
in functional characterization is required for these bioactive chemicals to be utilized in
functional meals. Effective hemp CBD incorporation in traditional food products has not
been fully explored and published on, which is critical for the creation of future goods.
Another issue is the resinous, oily texture of hemp extracts, as well as their solubility in
organic solvents, lipids, and alcohols. It is critical to choose the right form (oil, extract)
in which to add the cannabinoids to the completed product so that they have acceptable
solubility and do not impact the formulation. In most cases, extracts containing A9-THC
and/or CBD dissolve in edible oils (e.g., coconut or olive). Further processing of these
extracts, however, necessitates the creation of an oil-and-water mixture. Understanding
how to increase the solubility, stability, and bio-accessibility of terpenes in various food
and beverage systems is also a major topic to be answered in order to establish the viability
of using hemp terpenes as a future functional food ingredient, similar to CBD.

Tinctures, soft capsules, and beverages are made with oil-water emulsions containing
cannabinoids. Surfactants (emulsifiers) such as polysaccharides, proteins, and phospho-
lipids are required for this sort of emulsion. The type of emulsion, oil molecular com-
position, and ionic strength of the aqueous extract all influence the emulsifier selection.
Because hemp extracts are oily and resinous, solid hemp products are difficult to make.
To address this issue, support chemicals are utilized to create a lipid matrix that allows
for the controlled release of cannabinoids while also preventing their breakdown [128].
Another issue for producers is ensuring concentration homogeneity in each component of
the product. Controlling the amount of water in the product and adjusting the packaging
(sufficient amount, inaccessibility to oxygen and light) are two strategies that will improve
the quality and durability of such products [138]. To determine bioactivity and bioavailabil-
ity, established methodologies for component quantification and thorough characterization
of cannabinoids are also required.

5.2. Regulation

Globally, cannabis regulations exhibit significant variation, ranging from full legal-
ization to strict prohibition. Countries like Canada and Uruguay have legalized both
recreational and medical cannabis use, with Germany joining in 2024, allowing adult
possession (e.g., <30 g) and taxed commercial sales. Medical cannabis is permitted in
Australia, Brazil, and 37 U.S. states, requiring prescriptions and often capping THC content
(e.g., 1% in Thailand). Decriminalization models, as seen in the Netherlands (coffee shops)
and Portugal (personal use <5 g), tolerate non-commercial possession while restricting
public consumption [139]. Conversely, nations like China and Japan enforce strict bans,
imposing severe penalties (e.g., 15 year imprisonment in China) [140]. The UNODC notes
rising legalization trends but warns of mental health risks from THC, while Prohibition
Partners predicts a $55.3 billion market by 2028 [139,141]. Regulatory frameworks continue
evolving, balancing public health and economic interests.



Foods 2025, 14, 2830

17 of 24

5.3. Future Perspectives

The cannabis food industry is poised for transformative growth as legalization ex-
pands globally and consumer acceptance increases. In the future, the global cannabis food
market might demonstrate three significant development vectors. At first, precision dosing
technology will revolutionize product standardization. Nano-emulsion techniques now en-
able much higher bioavailability of cannabinoids compared to traditional edibles [142,143],
allowing for predictable onset times and effect durations. Secondly, functional food inte-
gration marks a paradigm shift. Leading manufacturers are combining CBD/THC with
adaptogens, nootropics, and probiotics to target specific health outcomes. Clinical trials
show promising results for sleep-aid formulations (CBD + melatonin) demonstrating evi-
dent improvement in sleep latency [144]. And thirdly, regulatory frameworks are driving
sophisticated quality control measures. Cannabinoid standards must be made to mandate
batch-level cannabinoid profiling and contaminant screening, elevating safety protocols
beyond conventional food requirements. Blockchain tracking systems which provide full
supply chain transparency from seed to sale should be established. The market bifurcation
into recreational and medicinal product lines continues to accelerate. Recreational products
emphasize flavor innovation and social experience, with infused beverages capturing a
higher percentage of new product launches than before. Medical formulations focus on
symptom-specific blends, particularly for chronic pain management [145]. In conclusion,
the future of cannabinoid-infused foods will focus on precise dosing, health-conscious
formulations, and mainstream market integration while navigating evolving regulations.

6. Conclusions

The rising popularity of hemp and its constituents has sparked concerns regarding the
safety of cannabinoid-containing nutritional supplements, dried hemp, and food. Many
studies on the properties of cannabinoids other than A’~-THC and CBD have opened up
new possibilities for the use of cannabinoids in addressing many human health concerns
throughout the last decade. Despite this, many functions of cannabinoids found at lower
concentrations than the main cannabinoids have yet to be discovered; gaining this knowl-
edge will enable greater utilization of such a diverse set of substances in medicine and
functional food production.

Liberalization of hemp production (mostly of low-THC kinds), potential use of hemp
plants in the treatment of chronic diseases, and use of hemp as a food additive are all
key reasons driving the hemp cultivation market forward. However, incorporating hemp
terpenes into foods and preserving terpenes throughout processing are still difficult tasks
that require more research. It is also important to figure out if these pathways play a role in
SCRA toxicity in humans. Hemp’s potential as a supplementary and healthy food source is
still being examined in clinical trials with sufficient power.
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