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Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment,
still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have
been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant
administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain
medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes

P450 and glucuronyl transferases).

1. Introduction

A drug-drug interaction (DDI) occurs when one drug alters
the clinical effect of another. Drug interactions occur on
pharmacodynamic and pharmacokinetic levels. In the first
case, one drug may alter the sensitivity or responsiveness to
another drug. Pharmacokinetic DDIs occur when a drug alters
the absorption or disposition (distribution and elimination) of
a concomitantly administered drug. This change can lead to
an altered quantity of drug at the site of action affecting the
magnitude and duration of the effect. In this scenario, a drug
is a perpetrator referring to the one that causes an effect on
the substrate drug, for example, by inducing or inhibiting
drug-metabolizing enzymes. Although DDIs are often associ-
ated with toxicity or therapeutic failure [1], sometimes they
can produce beneficial effects to the patient (i.e., improving
the bioavailability of a drug and producing additive or syner-
gistic effects) [2]. In any case, clinicians must be familiar with
DDIs in order to improve prescribing tools.

During the last 5 years, a dramatic rise in the use of
cannabis led to an increased number of patients taking it
simultaneously with their previous medication. This situa-
tion could result in several problems as cannabinoids may
be classified as either perpetrators or substrates depending
on the concomitant drugs leading to altered exposure,
adverse events, and/or lack of clinical efficacy. However,
scarce evidence is available about cannabis drug interactions
with potential implications in clinical efficacy and safety.

The endocannabinoid system has been recognized as a
potential therapeutic target. Either highly purified cannabidiol
(such as Epidiolex recently approved in the United States for
use in Lennox-Gastaut or Dravet syndrome) or formulations
with different Ag-tetrahydrocannabinol (THC) to cannabidiol
(CBD) ratios (such as Sativex, an oromucosal spray for the
treatment of multiple sclerosis-associated spasticity) are being
investigated for other disease states. Although the use of
cannabinoids for the treatment of pain is supported by some
controlled clinical trials [3-5], currently and according to
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systematic reviews and meta-analysis [6-8], there is only mod-
erate evidence to support the use of cannabinoids in treating
chronic pain and larger and higher quality clinical trials are
needed. Despite this fact, chronic pain relief is by far the most
common condition cited by patients using cannabis for med-
ical purposes and very little is known about potential pharma-
cokinetic interactions with common medication prescribed
for chronic pain.

Nowadays, even cannabinol (CBN), a byproduct of THC
degradation, is being studied for its analgesic effect [9].

CBD, THC, and CBN are extensively metabolized in the
liver and in the intestine. Mainly CYP2C19 and, to a lesser
extent, CYP3A4 are implicated in CBD biotransformation
[10, 11]. CBD can also undergo direct conjugations via
UDP-glucuronosyltransferase (UGT) enzymes, such as
UGT1A9, UGT2B7, and UGT2B17 [12, 13]. THC biotrans-
formation is primarily dependent on CYP2C9 and CYP3A4
isoenzymes [14], but UGT enzymes play a critical role in
metabolizing THC metabolites (THC-OH, THC-COOH)
as well [12]. CBN is metabolized by CYP2C9 and CYP3A4
and can also undergo direct glucuronidation by hepatic
UGT1A9 and the extrahepatic UGT1A7, UGT1AS8, and
UGT1A10 [12, 14].

CBD is not only a substrate but also an inhibitor of
CYP450 enzymes and UGTs. In addition, some isoenzymes
of the cytochrome P450 system or UGTs are also subjected
to inhibition by THC and CBN [11, 15-25].

Regarding the inducing activity of cannabinoids, smoked
cannabis may increase the clearance of drugs metabolized by
CYP1A2 [24, 25], resulting in lower concentrations of these
drugs and perhaps in therapeutic failure.

Furthermore, in vitro and animal studies have shown that
CBD, THC, and CBN interact in some way with ATP-
binding cassette superfamily: breast cancer-resistant protein
(Berp) and glycoprotein P (Pgp). Thus, a significant impact
on the absorption and disposition of other coadministered
drugs that are also substrates of these transporters may be
expected. According to some preclinical studies [26-29],
CBD inhibits Pgp and Bcrp. Even though inhibitors are often
substrates, different in vitro and animal studies show that
CBD is not a Pgp substrate [30, 31] and it acts provoking a
downregulation in Pgp expression. THC and CBN could also
deregulate Pgp, Berp, and multidrug-resistant protein (MRP)
1-4 expression [15]. An overview of the effect of cannabi-
noids on CYP450 isoenzymes, UGTSs, and efflux transporters
is summarized in Table 1.

As cannabinoids are often used as add-on therapy, the
occurrence of DDIs seems more plausible. Therefore, their
use in the therapy could interfere with the disposition of
other drugs that undergo the same metabolic pathways.
Nonetheless, few studies in humans have been carried out
and reported in the literature about DDIs of cannabinoids
with other prescribed medications [32-34] and some of them
are only case reports [35-37].

Although in vitro or animal studies about DDIs should
not be extrapolated to human beings, healthcare providers
should be aware of clinically important DDIs leading in some
cases to therapeutic improvement or in other cases to thera-
peutic failure or toxicity. Therefore, this review addresses a
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comprehensive overview of potential pharmacokinetic inter-
actions affecting drug metabolism enzymes such as cyto-
chrome P450 or UGTs and membrane efflux transporters
between cannabinoids and drugs used for chronic pain.

2. Methodology

Electronic databases of published scientific literature were
the main source for this review. The in vitro and in vivo
research findings and clinical case reports were searched
from PubMed, Google Scholar, and Cochrane Library. Some
studies were identified with Google search. Additional
articles of interest were obtained through cross-referencing
of published literature. The primary key terms used were
“pharmacokinetics,” “drug interactions,” “cannabinoids,”
“metabolizing enzymes,” “efflux transporters,” and “chronic
pain medication.” Only English language papers were taken
into consideration.

3. Drug-Drug Interactions

3.1. Cannabinoids-Opioids. The conventional opioids most
commonly used for chronic pain management are morphine,
oxycodone, codeine, methadone, tramadol, and fentanyl.
Most opioids exert an analgesic effect through binding to
the y opioid receptor except for tramadol and methadone
that include both opioid and nonopioid components [38, 39].

Morphine is glucuronidated via UGT2B7 to morphine-3-
glucuronide (M3G) and morphine-6-glucuronide (M6G),
being the latter a highly active analgesic [40].

Oxycodone is metabolized in the liver by CYP3A4/5 and
CYP2D6. An active metabolite (oxymorphone) is formed by
CYP2D6 [41, 42]. Oxycodone glucuronidation is carried out
by UGT2B7 and UGT2B4 while oxymorphone is glucuroni-
dated mostly by UGT2B7 [43].

CBD inhibits UGT2B7, and thus, a lower M6G to
morphine ratio should be expected and less analgesic potency.
Moreover, CBD, THC, and CBN inhibit CYP2D6 affecting
oxymorphone formation and thus reducing analgesic effect.
Therefore, if the interactions mentioned above take place,
perhaps less analgesia would be seen with the combination
of cannabis and these two opioids. However, several studies
in the literature report that cannabis enhances the analgesic
effects of opioids, thereby allowing for lower doses [44-47].
Furthermore, Abrams et al. [48] found that vaporized canna-
bis given to patients with chronic pain on opioid therapy
(morphine or oxycodone) increased the analgesic effect of opi-
oids but no significant differences were observed in the mean
plasma concentration-time curves for morphine and oxyco-
done with and without cannabis treatment. These authors
suggested pharmacodynamic interactions between opioids
and cannabinoids. However, as opioid delivery to the brain
is influenced by ATP-binding cassette transporters [49-51],
a pharmacokinetic interaction should not be neglected.

Several cytochrome P450 enzymes are involved in
methadone metabolism: CYP3A4, CYP2B6, and CYP2C19
and, to a lesser extent, CYP2C9, CYP2C8, and CYP2D6. It
has become clear nowadays that CYP2B6, rather than
CYP3A4, is the predominant P450 responsible for clinical
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TasLE 1: Effect of cannabinoids on CYP450 isoenzymes, UGTs, and efflux transporters.
Cannabinoids CYP P450 isoenzymes UGTs Modulation of efflux transporter expression

Inhibition of CYP1A1, CYP1A2,
CBD CYP2C9, CYP2C19, CYP2Be,
CYP3A4, and CYP2D6

THC Inhibition of CYP3A4,
CYP2D6, and CYP2C9
CBN Inhibition of CYP3A4,

CYP2D6, and CYP2C9

THC-OH, THC-COOH
(metabolites) can compete with
glucuronidation pathways

Inhibition of UGT1A7, 1A8, and

Inhibition of UGT1A9 and 2B7

Deregulation of Pgp, BCRP, and
MRP1-4 transporter expression

1A9

BCRP: breast cancer resistance proteins; CBD: cannabidiol; CBN: cannabinol; CYP: cytochrome; MRP: multidrug resistance proteins; Pgp: glycoprotein P;
THC: Ag—tetrahydrocannabinol; THC-OH: 11-hydroxy-tetrahydrocannabinol; THC-COOH: 11-nor-9-carboxy-tetrahydrocannabinol; UGTs: UDP

glucuronosyltransferases.

methadone disposition [52]. CBD is a strong inhibitor of
CYP2B6, so increased levels of this opioid and a greater anal-
gesic potency might be observed. An increased plasma level
of methadone was observed in a pediatric patient receiving
CBD [36], which decreased fourteen days after CBD was
discontinued.

Some authors [53] concluded that morphine and metha-
done analgesia was greater in mice lacking Pgp. Hassan et al.
[54] found that oxycodone is a Pgp substrate in vivo. Some
studies [50, 55, 56] suggested that this efflux transporter
limits the entry of some opiates into the brain and that
administration of Pgp inhibitors or drugs that downregulate
Pgp expression can increase the sensitivity to these opiates.
This fact, rather than enzyme inhibition by cannabinoids,
could be the explanation of augmented analgesic potency of
opiates, and the need of lowering their doses in the presence
of cannabinoids as efflux transporters are deregulated by can-
nabinoids. This could be the case for morphine, oxycodone,
and methadone as they are substrates of efflux transporters.

Neither codeine nor tramadol is Pgp substrates [51, 57].
The polymorphic CYP2D6 regulates the O-demethylation
of codeine and tramadol to more potent metabolites: mor-
phine and O-desmethyl-tramadol, respectively. Tramadol
undergoes another metabolic pathway catalyzed by CYP3A4
and CYP2B6.

According to some authors [58], if the subject is a poor
metabolizer, inadequate analgesia can be observed. If CBD,
THC, or CBN inhibition of CYP2D6 predominates, the
analgesic effects of tramadol and codeine will be reduced.
However, the fate of the active metabolites has to be taken into
account as well. O-desmethyl-tramadol undergoes inactivation
by UGT2B7 and UGT1AS [59], and morphine as stated before
is a Pgp substrate. If cannabinoids interfere in the elimination
of these metabolites either by inhibiting UGT2B7 or by dereg-
ulating efflux transporter expression, the result will be the
opposite. Further studies are necessary in order to assess canna-
binoid influence on codeine and tramadol.

Fentanyl is mainly metabolized by CYP3A4 and is a Pgp
substrate [50, 60]. Although some authors found no interac-
tion between fentanyl given intravenously and CBD [61],
plasma levels of fentanyl were undetectable before and after
the administration of CBD. Therefore, deeper research is
necessary in order to conclude on a possible pharmacoki-
netic interaction.

To sum up, if opioids and/or their active metabolite levels
are increased when taken along with cannabinoids, an
enhanced analgesic activity can be observed.

3.2. Cannabinoids-Acetaminophen. Acetaminophen (para-
cetamol) is a drug with analgesic and antipyretic properties
widely used for pain relief. Although its analgesic effect is
weaker in comparison with nonsteroidal anti-inflammatory
drugs (NSAIDs), it can be considered as a first-line option
among nonopioids due to a more favorable safety profile.
However, high concentrations can induce liver damage, and
therefore, daily doses should not exceed 4 g [62].

Acetaminophen glucuronidation by UGT1A1, UGT1AS6,
UGT1A9, and UGT2B15 is the main biotransformation
pathway, and only a minor fraction of the drug is oxidized
to the highly reactive metabolite N-acetyl-p-benzoquinone
imine (NAPQI) [63]. Acetaminophen-induced liver toxicity
with the concomitant use of phenytoin or phenobarbital or
with the use of tyrosine kinase inhibitors was reported in
the literature [64, 65]. The interaction is assumed to be due
to competition or inhibition of UGT activities. A recent study
[66] revealed that the coadministration of a cannabidiol-rich
cannabis extract and acetaminophen results in alterations in
the livers of aged female mice. As cannabinoids can inhibit
UGTs, a higher concentration of acetaminophen might be
expected. When glucuronidation is compromised, acetamin-
ophen is directed towards the formation of the reactive
metabolite NAPQI resulting in liver damage.

Moreover, acetaminophen is a MRP2 substrate so dereg-
ulation of this transporter by the concomitant use of canna-
binoids can result in higher levels of the drug as well [67].

3.3. Cannabinoids-Antidepressants. Mixed-action antidepres-
sants (serotonin and norepinephrine-reuptake inhibitors)
such as duloxetine, amitriptyline, and venlafaxine are a main-
stay in the treatment of many chronic pain conditions [68].

Elimination of duloxetine is mainly through hepatic
metabolism involving CYP1A2 and to a lesser extent
CYP2D6. There is evidence that coadministration of dulox-
etine with CYP1A2 and CYP2D6 inhibitors increased
duloxetine levels [69]. As stated before, CBD is an inhibitor
of CYP1A2 and THC, CBD, and CBN inhibit CYP2D6é, so if
cannabinoids are used as a concomitant medication, an
increase in duloxetine plasma levels may be seen.
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Venlafaxine relies on CYP2D6 for conversion to O-des-
methylvenlafaxine (major active metabolite). Further conver-
sion of this metabolite involves CYP2C19 and CYP3A4.
Venlafaxine is also metabolized by CYP2C19, CYP2C9, and
CYP3A4 but to a lesser extent [70]. As all the enzymes
implied in venlafaxine and its active metabolite biotransfor-
mation are inhibited by cannabinoids, the clinical implication
is difficult to predict. Several studies evaluating CYP2D6
polymorphism [71-73] concluded that higher venlafaxine
and lower O-desmethylvenlafaxine levels in poor metabolizers
resulted in a reduced clinical response with an increased risk
for side effects in comparison with extensive metabolizers.
Polymorphisms in the CYP2C19 genes that result in decreased
enzymatic activity have also been documented [74, 75].
Therefore, elevated venlafaxine levels caused by the potential
inhibition of cannabinoids of its metabolic pathway can affect
drug response and its side-effect profile.

Amitriptyline is metabolized mostly by CYP2De,
CYP3A4, and CYP2C109, the latter leading to the formation
of nortriptyline (active metabolite). Other isozymes involved
in amitriptyline metabolism are CYP1A2 and CYP2C9. Based
on dosing recommendations made by the Clinical Pharmaco-
genetics Implementation Consortium in 2016 according to
CYP2D6 and/or CYP2C19 variants of individuals [76], if the
level of amitriptyline and its active metabolites are too high
as happening in poor metabolizers, there is an increased risk
of toxicity. Certain drugs as cannabinoids inhibit the activity
of these isoenzymes and make normal metabolizers resemble
poor metabolizers.

Regarding efflux transporters in the brain, recent studies
supported a low possibility that Pgp affects these drugs [77].

To sum up, drug interactions between cannabinoids and
antidepressants, if they occur, may be due to metabolizing
enzyme inhibition. This inhibition may increase the levels
of the antidepressants or their active metabolites resulting
in side effects such as the serotonin syndrome, hyponatrae-
mia [78-80], hemorrhagic events [81-84], and QT interval
prolongation among others [85, 86]. In the case of duloxetine
and amitriptyline, as both drugs are metabolized by CYP1A2,
chronic smoked cannabis use may result in lower concentra-
tions of these drugs and perhaps lower efficacy.

3.4. Cannabinoids-Anticonvulsants. Antiepileptic drugs are
used worldwide to treat several disorders other than epilepsy,
such as neuropathic pain, migraine, and bipolar disorder
[87]. The first-line options for the treatment of various
neuropathic pain conditions are carbamazepine, gabapentin,
and pregabalin [88].

Pregabalin and gabapentin share a similar mechanism of
action, and both undergo renal excretion [89]. Based on the
renal elimination of these drugs, no DDIs between these
gabapentinoids and cannabinoids should be expected. With
regard to efflux transporters, some authors’ results [90]
suggested that a combined treatment of pregabalin with
Pgp inhibitors enables the prolongation of dose interval of
this drug. However, no studies in literature found increased
pregabalin levels in the brain with the use of Pgp inhibitors.

Although Gaston et al. [32] did not find changes in carba-
mazepine levels when administered with cannabis, they
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focused the study on CBD as the perpetrator drug and carba-
mazepine as the substrate but information is lacking about
the influence of concomitant carbamazepine on CBD plasma
levels. Carbamazepine is a well-known inducer of CYP3A4
[91], and therefore, THC, CBD, and CBN metabolism could
be affected leading to lower plasma concentrations of these
cannabinoids.

Although there is insufficient evidence to support the use
of valproic acid for neuropathic pain and fibromyalgia [92],
it is sometimes used for these purposes in the clinical practice.
Valproic acid is metabolized by three different routes:
glucuronidation (UGT1A3, UGT1A4, UGT1A6, UGT1AS,
UGT1A9, UGT1A10, UGT2B7, and UGT2B15) and f3-oxida-
tion (using carnitine as a carrier) in the mitochondria (major
pathways) and a minor route (w-oxidation) leading the latter
to the formation of a hepatotoxic metabolite (4-en-VPA)
[93, 94]. According to some studies [95], valproic acid
inhibited UGT1A9 in an uncompetitive manner and UGT2B7
competitively. Glucuronidation is also involved in CBD
metabolism being CBD an inhibitor of UGT1A9 and
UGT2B7. On the one hand, if cannabinoid concentrations
are high, perhaps CBD may impair valproic acid glucuronida-
tion, and thus, valproic acid clearance may be reduced. The
higher concentrations of valproic acid induce carnitine
depletion [96], and this could increase the w-oxidation route
leading to a higher concentration of 4-en-VPA (hepatotoxic
metabolite). This last fact could result in incorrect ammonium
elimination and thus hyperammonemia [97-99]. On the other
hand, valproic acid inhibits UGT1A9 and UGT2B7, both
involved in cannabinoid elimination. Perhaps, this inhibition
plays the main role and higher concentrations of cannabinoids
could be seen in turn. This fact could be supported by the
observation made by Gaston et al. [32]. Although these
researchers did not measure CBD levels, they did not find a
significant change in the valproate levels with increasing doses
of CBD but a rise in aspartate transaminase (AST) and/or ala-
nine transaminase (ALT) levels after CBD treatment. These
authors concluded that CBD enhances the negative effects of
valproic acid on liver functions, but perhaps, valproic acid is
the one that intensifies CBD hepatotoxicity augmenting its
blood levels. Research done in mice [100] showed that CBD
treatment increases liver-to-body weight, ALT, AST, and total
bilirubin. In clinical trials carried out recently, some authors
[101-103] found elevated liver enzymes in 5-20% of patients
treated with CBD, and some patients had to be withdrawn
from the studies due to serious hepatic complications. So the
combination of CBD with other drugs that exhibit hepatotox-
icity and interact with CBD should be of great concern.
Valproic acid is not a substrate of Pgp or MRPs [104], so
interactions with cannabinoids at this level are unlikely.

Regarding lamotrigine, although the evidence of its
efficacy in chronic pain is unconvincing, it can have some
effect in patients with painful HIV-related neuropathy [105]
and in the prevention of migraine with aura [106]. Lamotri-
gine is predominantly metabolized by glucuronidation
(UGT1A4 and UGT2B?7), and it also undergoes elimination
by a minor elimination pathway that involves CYP450
enzymes [107]. This minor route converts the drug to a
reactive arene oxide metabolite [108]. Such intermediate
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TaBLE 2: Drugs commonly used in chronic pain, their main metabolic pathways, efflux transporter implication, and the result of potential

interaction with cannabinoids.

Efflux
Drugs transporter
substrate

Metabolic pathway

Potential cannabinoid interaction

Morphine Yes UGT2B7

Codeine No CYP2D6

Oxycodone Yes

Methadone Yes CYP2C8, and CYP2D6

Tramadol No
CYP3A4

Fentanyl Yes

Acetaminophen Yes

CYP1A2, CYP2D6

Duloxetine No

Venlafaxine No

Amitriptyline No CYP1A2, and CYP2C9

UGT1A3, A4, A6, A8, A9, A10, UGT2B7,
UGT2B15, and p-oxidation in the mitochondria

Valproic acid No
(using carnitine as carrier)

Lamotrigine Yes UGT1A4, UGT2B7

CYP3A4/5, CYP2D6, UGT2B7, and UGT2B4

CYP3A4, CYP2B6, CYP2C19, CYP2C9,

CYP2D6, CYP2B6, and CYP3A

UGT1A1, UGT1A6, UGT1A9, and UGT2B15

CYP2D6, CYP2C19, CYP2C9, and CYP3A4

CYP2D6, CYP3A4, CYP2C19,

Augmented analgesic potency due to efflux transporters
downregulation. Dose reduction may be required.

Possible augmented analgesia provoked by the active
metabolite (morphine) by downregulation of efflux
transporter expression. Dose reduction may be required.

Augmented analgesia due to parent drug or active
metabolite by efflux transporter downregulation and/or
enzyme inhibition. Dose reduction may be required.

Augmented analgesia due to enzyme inhibition and/or
efflux transporter downregulation. Dose reduction may
be required.

Possible augmented analgesia due to inhibition of
metabolism of active metabolite. Dose reduction may
be required.

Possible augmented analgesia due to inhibition of
metabolism and/or efflux transporter downregulation.

Higher levels of acetaminophen due to UGT inhibition
and/or efflux transporter downregulation and thus
possible hepatotoxicity. Monitor adverse effects.

Higher concentration of antidepressant due to
metabolizing enzyme inhibition. Dose reduction may
be required.

Smoked cannabis may increase clearance of duloxetine.
Monitor for loss of efficacy with chronic marijuana use.

Higher concentration of antidepressant due to
metabolizing enzyme inhibition. Dose reduction may
be required.

Higher concentration of parent drug and/or active
metabolites due to metabolizing enzyme inhibition. Dose
reduction may be required.

Smoked cannabis may increase clearance of amitriptyline.
Monitor for loss of efficacy with chronic marijuana use.

Possible higher levels of valproic acid by inhibition of
UGTs or higher levels of cannabinoids due to valproic
acid UGT inhibition. In both cases, the interaction could
result in hepatic damage. Monitor adverse effects.
Higher levels of lamotrigine by UGT inhibition and/or
downregulation of efflux transporters. Possible cutaneous
reactions. Dose reduction may be required.

metabolite, if not effectively detoxified, can result in cellular
damage [109]. Skin injuries, Stevens-Johnson syndrome, and
toxic epidermal necrolysis are all reported adverse events
related to lamotrigine use [110], mainly when the drug is
coadministered with valproic acid [111-113], a well-known
inhibitor of the glucuronidation pathway. Cannabinoids can
act inhibiting UGT's [114] in the same way valproic acid does.
So, in the absence of the major pathway, lamotrigine can be
bioactivated to the arene oxide and an increased risk of skin
reactions in patients could be expected. In addition, lamotri-
gine is a substrate of Pgp and BCRP [115], so downregulation
of their expression provoked by cannabinoids can intensify the
drug effect.

A comprehensive overview of the potential interactions
discussed in the text is summarized in Table 2.

4. Conclusion

Data on significant DDIs between cannabinoids and other
medications is still limited and most of it comes from
in vitro and animal studies. The results obtained in the
literature may be of help, but they cannot be extrapolated
to human beings. Given that the widespread use of cannabi-
noids will certainly continue, further research in humans is
essential to clarify DDIs in order to fully understand their
relevance in the clinical setting.
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