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Background and Purpose: Marijuana is the illicit drug most commonly used among
pregnant and breastfeeding women. Different studies reported long-term adverse
effects induced by in utero exposure to the main component of marijuana, A°-
tetrahydrocannabinol (THC), both in rodents and in humans. However, little is known
about any potential sex-dependent effects of marijuana consumption during preg-
nancy on newborns at early developmental ages.

Experimental Approach: We studied the effects of prenatal exposure to the cannabi-
noid receptor agonist WIN55,212-2 (WIN; 0.5 mg-kg~* from GD5 to GD20) on the
emotional reactivity and cognitive performance of male and female rat offspring from
infancy through adolescence and tested the role of mGlus receptor signalling in the
observed effects.

Key Results: Prenatally WIN-exposed male infant pups emitted less isolation-
induced ultrasonic vocalizations compared with male control pups, when separated
from the dam and siblings and showed increased locomotor activity while females
were spared. These effects were normalized when male pups were treated with
the positive allosteric modulator of mGlus receptor CDPPB. When tested at the
prepubertal and pubertal periods, WIN-prenatally exposed rats of both sexes did
not show any difference in social play behaviour, anxiety and temporal order
memory.

Conclusions and Implications: We reveal a previously undisclosed sexual diver-
gence in the consequences of fetal cannabinoids on newborns at early develop-
mental ages, which is dependent on mGlus receptor signalling. These results
provide new impetus for the urgent need to investigate the functional and behav-
ioural substrates of prenatal cannabinoid exposure in both the male offspring and

the female offspring.

Abbreviations: % OE, percentage of open arm entries; % TO, percentage of time spent in the open arms; CDPPB, the positive allosteric modulator of mGlus receptors; CTRL, control; GD,
gestational day; HDIPS, number of exploratory head dips; PND, postnatal day; SAP, number of stretched-attend postures; USVs, isolation-induced ultrasonic vocalizations; VEH, vehicle; WIN,

the cannabinoid receptor agonist WIN 55,212-2.
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1 | INTRODUCTION

Marijuana (produced from Cannabis sativa) is the illicit drug most
commonly used among pregnant and breastfeeding women (Brown,
2017; Scheyer, 2019; Substance Abuse and Mental Health Services
Administration, 2013). The main active principle of cannabis, A’-
tetrahydrocannabinol (THC), enters maternal circulation and readily
crosses the placenta (Hutchings, Gamagaris, Miller, & Fico, 1989).
Thus, prenatal cannabis exposure might exert deleterious effects on
the fetus. Nowadays, the legalization of medical and recreational can-
nabis is increasing throughout the United States and many other
countries debate on its possible legalization. In this context, rigorous
scientific research about the impact of cannabis use on health and
well-being becomes more important than ever.

Human studies have provided invaluable information on the
detrimental effects of prenatal cannabis exposure on the offspring
from the neonatal period through to early adulthood (Crume et al.,
2018; El Marroun et al., 2018; Huizink, 2014; Ryan, Ammerman, &
O'Connor, 2018), revealing increased tremors, startle, altered sleep
patterns at birth (Calvigioni, Hurd, Harkany, & Keimpema, 2014,
Volkow, Compton, & Wargo, 2017) and significant impairment of
higher cognitive functions beyond infancy (Fried, 2002; Fried,
Watkinson, & Gray, 1998; Grant, Campbell, & Beckert, 2018;
Huizink & Mulder, 2006; Leech, Richardson, Goldschmidt, & Day,
1999; Passey, Sanson-Fisher, D'Este, & Stirling, 2014; Smith, Fried,
Hogan, & Cameron, 2006). However, one weakness of human
studies is that they cannot control for environmental and genetic fac-
tors. Therefore, a wide array of animal studies has been performed to
better evaluate the contribution of prenatal cannabis to adverse, even
subtle neurodevelopmental consequences in the offspring (Grant
et al,, 2018; Trezza et al., 2012).

The endocannabinoid system plays a relevant role in a broad
Notably, CB1

cannabinoid receptors already functional around gestational days

spectrum of neurodevelopmental processes:

(GD) 11-14 in rats, are involved in embryonal implantation, neural
development and control of synaptic communication (Berghuis et al.,
2007; Harkany et al., 2007). Pioneering animal studies have demon-
strated specific deficits in prenatally cannabis-exposed rodent off-
spring at different developmental periods (Grant et al., 2018;
Richardson, Hester, & McLemore, 2016; Trezza et al., 2012). Interest-
ingly, some of the behavioural deficits displayed by rodents prenatally
exposed to cannabinoids have been related to changes in brain gluta-
matergic neurotransmission (Antonelli et al., 2004; Antonelli et al.,
2005; Castaldo et al., 2007; Mereu et al., 2003).

Noteworthy, was that the majority of these studies were con-
ducted exclusively in the male progeny. Therefore, an urgent need
exists to understand the effects of prenatal cannabis exposure also in
female progeny. Pioneering preclinical and clinical studies reported
sexually dimorphic responses to cannabinoids, when administered
during the gestational and/or early postnatal periods (Navarro,
Rubio, & de Fonseca, 1995; Vela et al., 1998; Wang, Dow-Edwards,
Anderson, Minkoff, & Hurd, 2004; Wang, Dow-Edwards, Anderson,
Minkoff, & Hurd, 2006). Recently, our laboratories also revealed a

What is already known

o Long-term adverse effects induced by in utero cannabis
have been described in rodents and humans.

o However, the majority of these studies have been con-

ducted exclusively in the male progeny.

What this study adds

e Cannabinoid fetal exposure causes sex-specific, mGlus-
related behavioural alterations in early developmental
periods of the progeny.

e The mechanisms by which prenatal cannabinoid exposure

affect both male and female offspring remain unknown.

What is the clinical significance
o Dissemination of our results adds further to preventative

education of pregnant women using marijuana.

previously undisclosed sexual divergence in the consequences of fetal
cannabinoids at adulthood. Prenatal exposure to the cannabinoid
receptor agonist WIN55,212-2 (WIN) reduced social interactions in
adult male but not female rats and altered neuronal excitability and
synaptic plasticity in the prefrontal cortex of male rats only. These
deficits were paralleled by decreased levels of mGlusR mRNA. Ampli-
fying mGlusR signalling with a positive allosteric modulator for
mGlusR normalized the social and synaptic deficits displayed by male
WIN-exposed rats (Bara et al., 2018).

Based on these findings, this study follows up our recent report
showing sex-dependent effects of in utero cannabinoid exposure in
rats at adulthood on their offspring and is aimed to test the effects of
prenatal exposure to WIN in both male and female rats at infancy and
at prepubertal and pubertal stages of development. This will allow the
evaluation of the possible sex-dependent effects induced by in utero
WIN exposure on emotional reactivity and cognitive performance at
different developmental ages before adulthood. The interaction
between cannabinoids and mGlusR has been extensively explored by
using  pharmacological, electrophysiological and anatomical
approaches (Araque, Castillo, Manzoni, & Tonini, 2017; Jung et al.,
2012; Katona & Freund, 2008; Lafourcade et al., 2007; Liang, Alger, &
McCarthy, 2014; Won et al., 2012). Importantly, mGlusR participate
in the developmental regulation of the endocannabinoid system.
Indeed, the developmentally dependent increase in endocannabinoid
mobilization (that occurs between the neonatal and juvenile stages)
correlates with increases in the levels of protein expression of mGlusR
(Liang et al., 2014). Based on this evidence and our recent findings on
the interaction between cannabinoids and mGlusR in modulating
behavioural and synaptic states in the context of nutrition (Manduca
et al., 2017) and social interaction in male offspring after in utero can-

nabinoid exposure (Bara et al., 2018), we here investigated whether
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the positive allosteric modulator of mGlusR CDPPB normalized the

behavioural deficits induced by in utero cannabinoid exposure.

2 | METHODS

21 | Animals

Wistar (RGD_13508588) female rats (Charles River, ltaly), weighing
250 + 15 g, were mated overnight. The morning when spermatozoa
were found was designated as gestational day O (GDO). Pregnant rats
were singly housed in Macrolon cages (40 x 26 x 20 cm), under con-
trolled conditions (temperature 20-21°C, 55-65% relative humidity
and 12/12 hr light cycle with lights on at 07:00 a.m.). Food and water
were available ad libitum. The synthetic cannabinoid receptor agonist
WIN55,212-2 (WIN, 0.5 mg-kg‘l) was administered to the dams subcu-
taneously (s.c.) daily from GD 5 to GD 20 (WIN group, n = 27). Control
dams (CTRL group, n = 26) received a similar volume injection of the
vehicle solution. Newborn litters found up to 05:00 pm were consid-
ered to be born on that day (postnatal day [PND] 0). On PND 1, litters
were culled to four males and four females. On PND 21, pups were
weaned and housed in groups of three. The experiments were carried
out on the male and female offspring at three different developmental
ages: (a) infancy (PNDs 10 and 13); (b) prepubertal period (PND 28-35
for males and PND 22-28 for females) and (c) puberty (PND 50-60 for
males and PND 30-40 for females offspring). Puberty corresponds to
vaginal opening and first ovulation (i.e. around 5 weeks) for female and
preputial separation for male rats (Beckman & Feuston, 2003;
Korenbrot, Huhtaniemi, & Weiner, 1977; Schneider, 2013).

To avoid the so-called “litter effects” one pup of both sexes per
litter from different litters per treatment group was randomly used in
each experiment (CTRL = 118 males and 89 females or WIN = 123
males and 87 females) as described in the Handbook of Behavioral Ter-
atology (CV Vorhees); Developmental and Reproductive Toxicology: A
Practical Approach (RD Hood). For power analysis, sample size (n) was
based on our previous experiments and power analysis with the soft-
ware GPower. Potential outliers within each data set were calculated
using the GraphPad software. Sample size is indicated in the figure
legends and represented in the figures as scatter dot plot. All behav-
joural tests were assessed by a trained observer who was unaware of
treatment condition to reduce performance bias. Reproduction data
including body weights of the dams (calculated from GD 1 to GD
21 and expressed as body weight gain in percentage) and the length
of pregnancy, the litter size, weight gains of pup and postnatal viability
(calculated as the number of live animals of both sexes at PND 21 [i.e.
weaning]/the number of live animals of both sexes at PND 1 in per-
centage) were also measured.

Animal studies are reported in compliance with the ARRIVE guide-
lines (Kilkenny, Browne, Cuthill, Emerson, & Altman, 2010) and with the
recommendations made by the British Journal of Pharmacology. The
experiments were approved by the Italian Ministry of Health (Rome,
Italy), with the guidelines released by the Italian Ministry of Health (D.L.
26/14) and the European Community Directive 2010/63/EU.

2.2 | Drugtreatment

WIN55,212-2 mesylate ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpho-
linyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-
methanone) (WIN, Sigma, Italy and National Institute of Mental
Health, USA) was suspended in 5% polyethylene glycol, 5% Tween
80 and 90% saline, and given subcutaneously (s.c.) at a volume of
1 ml-kg™? to the gestating dams. The dose of WIN used in this study
(0.5 mg-kg™) has been estimated to correspond to a moderate or
even to a low exposure to cannabis in humans (Antonelli et al., 2004;
Compton, Johnson, Melvin, & Martin, 1992; French, Dillon, & Wu,
1997) and it does not induce any sign of toxicity and/or gross mal-
formations in the rat offspring (Mereu et al., 2003). The positive
allosteric modulator of mGlus receptors CDPPB (3-cyano-N-(1,-
3-diphenyl-1H-pyrazol-5-yl)benzamide) (National Institute of Mental
Health, USA) was dissolved in 5% Tween 80/5% polyethylene
glycol/saline and given intraperitoneally (i.p.) at the dose of
1.5 mg-kg™! 30 min before testing of offspring. Drug doses and pre-
treatment intervals were based on previous work and pilot experi-
ments. Solutions were freshly prepared on the day of the experiment

and were administered in a volume of 2.5 ml-kg™? to offspring.

3 | BEHAVIOURAL TESTS

3.1 | Isolation-induced ultrasonic vocalizations
Isolation-induced ultrasonic vocalizations (USVs) are emitted by
rodent pups when removed from the nest and play an important com-
municative role in mother-offspring interactions (Manduca,
Campolongo, & Trezza, 2012). On PND 10, the isolation-induced
USVs emitted by CTRL- and WIN-exposed pups were recorded as
previously described (Antonelli et al., 2005; Melancia et al., 2018).
Briefly, pups were individually removed from the nest and placed into
a black Plexiglas arena (30 cm x 30 cm), located inside a sound-
attenuating and temperature-controlled chamber. Pup USVs were
detected for 15 s by an ultrasound microphone (Avisoft Bioacoustics,
Berlin, Germany) sensitive to frequencies between 10 and 200 kHz
and fixed at 15 cm above the arena and analysed quantitatively (num-
bers of calls/15 s).

3.2 | Homing behaviour

The homing behaviour test exploits the tendency of immature rodent
pups to maintain body contact with the dam and siblings, and to dis-
criminate their own home cage odour from a neutral odour, which is
an early indicator of social discrimination (Bignami, 1996). The homing
behaviour test was performed as previously described (Servadio et al.,
2018). Briefly, on PND 13, the litter was separated from the dam and
kept for 30 min in a temperature-controlled holding cage. Then each
pup was placed into a Plexiglas box whose floor was covered for 1/3

with bedding from the pup's home cage and for 2/3 with clean
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bedding. The pup was located at the side of the box covered by clean
bedding and its behaviour was video recorded for 4 min for subse-
quent analysis. The following parameters were scored by an observer,
unaware of animal treatment, using the Observer 3.0 software
(Noldus, The Netherlands), the latency (s) to reach the home-cage
bedding area; total time (s) spent by the pup in the nest bedding area,
total number of entries into the nest bedding area and locomotor

activity, expressed as the total number of crossings in the test box.

3.3 | Social play behaviour

Social play behaviour is one of the earliest forms of non-mother-
directed social behaviour very abundant during the juvenile phases
of life in mammalian species, including rats (Vanderschuren,
Achterberg, & Trezza, 2016). The test was performed as previously
described (Manduca et al, 2016). Prepubertal and pubertal rats
were individually habituated to the test cage for 10 min on each of
the 2 days before testing. The test was performed between 9 am
and 2 pm under low light condition and consisted of placing the
animal together with a similarly treated partner into the test cage
for 15 min. Behaviour was assessed per pair of animals and
analysed by a trained observer, who was unaware of the treatment
condition to reduce performance bias, using the Observer 3.0 soft-
ware (Noldus Information Technology, The Netherlands). Both ani-
mals in a test pair had received the same treatment during
gestation (CTRL- or WIN-in utero). Animals in a test pair did not
differ by >10 g in body weight and had no previous common social
experience (i.e. they were not cage mates).

In rats, a bout of social play behaviour starts with one rat
soliciting (“pouncing”) another animal by attempting to nose or rub
the nape of its neck. If the animal that is pounced upon fully rotates
to its dorsal surface “pinning” is the result (one animal lying with its
dorsal surface on the floor with the other animal standing over it),
which is considered the most characteristic posture of social play
behaviour in rats (Pellis & Pellis, 2009).

We determine, (a) frequency of pinning, (b) frequency of pouncing
and (c) time spent in social exploration (i.e. the total amount of time
spent in non-playful forms of social interaction, like sniffing any part
of the body of the test partner, including the anogenital area or

grooming any part of the partner body).

3.4 | Elevated plus-maze test

The elevated plus-maze apparatus comprised two open (50 x
10 x 40 cm®; | x w x h) and two closed arms (50 x 10 x 40 cm®; | x
w x h) that extended from a common central platform (10 x 10 cm?).
The test was performed as previously described (Manduca et al,,
2015; Trezza et al., 2008). Rats were individually placed on the central
platform of the maze for 5 min. Each 5-min session was recorded with
a camera positioned above the apparatus for subsequent behavioural

analysis carried out by an observer, unaware of animal treatment to

reduce performance bias, using the Observer 3.0 software (Noldus,

The Netherlands). The following parameters were analysed: -

e % time spent in the open arms (% TO): (seconds spent on the open
arms of the maze/seconds spent on the open + closed arms) x 100.
Time on the open quadrants was timed from the moment all four
paws of the rat were placed on an open section and ended when
all four paws re-entered a closed quadrant.

e % open arm entries (% OE): (the number of entries into the open
arms of the maze/number of entries into open + closed arms) x 100.

e number of closed-arm entries.

e number of stretched-attend postures (SAP) made from the exit of a
“closed” quadrant towards an “open” quadrant. This exploratory pos-
ture can be described as a forward elongation of the body with static
hind-quarters followed by a retraction to the original position.

e number of exploratory head dips (HDIPS) made over the edge of
the platform, either from the exit of the “closed” quadrant or whilst
on the “open” quadrant.

3.5 | Temporal order memory test

Animals were habituated to the experimental arena (40 x 40 cm) with-
out objects for 10 min daily for 2 days before testing. This task con-
sisted of two sample phases and one test trial (Barker, Bird,
Alexander, & Warburton, 2007; Manduca et al., 2017). In each sample
phase, rats were allowed to explore two copies of an identical object
for a total of 4 min. Different objects were used for sample Phases
1 and 2, with a delay between the sample phases of 1 hr. After 3 hr
from sample Phase 2, rats performed the test trial (4 min duration)
where a third copy of the objects from sample Phase 1 and a third copy
of the objects from sample Phase 2 were used. The positions of the
objects in the test and the objects used in sample Phase 1 and sample
Phase 2 were counterbalanced between the rats. An intact temporal
order memory requested the subjects to spend more time exploring the
object from Sample 1 (i.e., the object presented less recently) compared
with the object from Sample 2 (i.e., the “new” object). The discrimina-
tion ratio was calculated as the difference in time spent by each animal
exploring the object from sample Phase 1 compared with the object
from sample Phase 2, divided by the total time spent exploring both
objects in the test phase. Negative discrimination means that animals
investigated more the object in Phase 2 than the object in Phase 1. Each
4-min session was recorded with a camera positioned above the appa-
ratus for subsequent behavioural analysis carried out an observer,
unaware of animal treatment to reduce performance bias, using the
Observer 3.0 software (Noldus, The Netherlands).

3.6 | Statistical analysis
The data and statistical analysis comply with the recommendations on
experimental design and analysis in pharmacology (Curtis et al., 2018).

Data are expressed as mean + SEM. To assess the effects of the
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prenatal treatments (WIN or CTRL) in the male and female offspring,
the behavioural data were analysed by two-way ANOVA, with treat-
ment and sex as factors. Two-way ANOVA was also used to assess
the effects of prenatal (WIN or CTRL) and postnatal (CDPPB or vehi-
cle) treatments. Three-way ANOVA was also used to assess the
effects of prenatal (WIN or CTRL) treatments in both male and female
offspring depending on the different developmental ages (prepubertal
and pubertal periods) (see Supplementary Figure 1). To assess the
effects on reproduction data, the data were analysed by using Stu-
dent's t-test (WIN or CTRL). Statistical significance was set at P < .05
with no further distinction made for P < .01 and P < .001. If main or
interaction effects were found significant in the ANOVA analysis with
no variance inhomogeneity, the Student-Newman-Keuls post hoc
test was used for individual group comparisons. Sample sizes sub-
jected to statistical analysis were at least 8 animal per group (n = 8),
where n = number of independent values. The software Sigma Plot
(RRID:SCR_003210) and GraphPad Prism (RRID:SCR_002798) were
used for statistical analysis of the data. Random allocation of animals
to treatment groups and to behavioural tasks and blinding of investi-
gators assessing outcomes were adopted to reduce selection and

detection bias in our trials (Curtis et al., 2018).

3.7 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.org, the
common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY (Harding et al., 2018), and are permanently
archived in the Concise Guide to PHARMACOLOGY 2019/20
(Alexander et al., 2019).

4 | RESULTS
41 | Reproduction data

No differences in body weight gains were observed between WIN-
and CTRL-treated dams. Prenatal WIN exposure did not affect preg-
nancy length, litter size at birth, postnatal viability and pup weight
gain at different developmental ages (Table 1).

4.2 | Prenatal exposure to the cannabinoid
receptor agonist WIN caused sex-dependent deficits
in social communication and locomotion in the infant
rat offspring

Prenatally WIN-exposed male pups emitted less isolation-induced
ultrasonic vocalizations (USVs) at infancy (PND 10) when separated
from the dam and siblings compared with male CTRL-pups (Figure 1:
[Psex) = NS5 Ptreaty < -05; Prsex x treaty < -05]). Interestingly, the deleteri-
ous effects of in utero WIN exposure on USVs were specific to the

Reproduction data following in utero exposure to WIN

TABLE 1

Pup weight (g)

PND45

PND25

PND13

PND10

Pregnancy Postnatal
viability (%)

Dam weight
gain (%)

Treatment
group

3

Litter size

length (days)
22.6 +0.29
22.6 +0.17

142.1 +3.10

246+0.65 239+0.67 303+0.82 290+102 71.7+183 59.6+155 1628+1.99
235+046 305+0.75 285+0.87 687+223 589+1.33

23.2+0.70

87.9 £1.048
88.4 + 1.352

12.9 +0.78

12.7 £ 0.67

343+191
33.1+1.42

CTRL

WIN

143.9 £ 3.71

158.7 + 2.90

9 CTRL- and n = 10 WIN-exposed male

10 dams per group (WIN vs. CTRL). Pup weight at different developmental ages was calculated for n

8 CTRL- and WIN-exposed female pups from different litters. Data represent mean values + SEM.

Note. Dam weight gain was calculated from GD 1 to GD 21 for n

and n
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FIGURE 1 Prenatal WIN exposure induces sex-specific

communicative deficits in the infant rat offspring. At infancy (PND
10), male progeny from dams exposed during gestation to WIN
vocalized significantly less compared to CTRL-pups when separated
from the dam and siblings. In contrast, the communicative profile of
female littermates was normal (males: CTRLn = 10, WIN n = 8;
females: CTRL n = 9, WIN n = 10). Specifically, prenatally WIN-
exposed male but not female showed a decrease in the rate of
USVs/15 s compared to their age-matched male progeny from CTRL
group. Scatter dot plot represents each animal. Error bars indicate
SEM. ‘P < .05. Student-Newman-Keuls test

male offspring. Post hoc analysis revealed that prenatally WIN-
exposed female pups showed no difference in the rate of USVs at
PND 10 when compared to age-matched females from CTRL group
(Figure 1) suggesting that prenatal exposure to the cannabinoid WIN

—_
Q
~

(b)

causes sex-dependent deficits in early social communication of the
offspring.

When tested in the homing behaviour test at PND13, male and
female pups prenatally exposed to WIN did not differ from control ani-
mals in the latency to reach the nest arena (Figure 2a: [pex) = N.S;
Pitreat) < -05; Pisex x treaty = N.S.]), in the total time spent in the nest zone
(Figure 2b: [pisex) = N.S.; Pitreat) = NS5 Prsex x treaty = N.5.]) and in the num-
ber of entries in the nest zone (Figure 2¢: [Psex) = N.S.; Pitreaty = NS
Pisex x treaty = N.S.]). However, the frequency of crossing in the test arena
was increased specifically in the male WIN-exposed offspring, while
WIN-exposed females were spared (Figure 2d: [P(sex) = N.S.; Pitreaty < -05;
Psex x treaty < .05]), suggesting a sex-dependent detrimental effects
induced by prenatal cannabinoid exposure on early life locomotion.

4.3 | Prenatal exposure to the cannabinoid
receptor agonist WIN had no effect on social play,
anxiety-like behaviours and temporal order memory in
the prepubertal progeny

When tested at prepubertal period, WIN and CTRL prenatally
exposed rats did not show any difference in social play behaviour
(Figure 3a,b). A detailed analysis of the various social play parameters
revealed that pinning (Figure 3a: [Peexy = NS Preaty = NS
Psex x treat) = N.S.]) and pouncing (Figure 3b: [Psex) = N.S.; Ptreaty = N.S-;
Psex x treaty = N.S.]) frequencies were similar between WIN and CTRL
animals of both sexes. Moreover, the time spent in general social
exploration (including non-playful forms of social interaction, like
sniffing) was unchanged during the 15-min session ([pgexy = N.S.;

P(treat) = N.S.; P(sex x treat) = N.S.], data not showed).
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To test whether prenatal cannabinoid exposure induced deficits
in emotional control and cognitive abilities, we tested WIN and CTRL
offspring of both sexes for their anxiety-like behaviour and temporal
order memory. No differences between WIN and CTRL prenatally
exposed prepubertal rats were found in the elevated plus-maze. Spe-
cifically, there was no change in the percentage of time spent in the
open arms of the maze (Figure 3c: [Pgexy = N.S.; Dpreaty < .05;
Psex x treaty = N.S.]), in the percentage of open arm entries (Figure 3d:
Psex) = N.S.; Preat) < -05; Prsex x treaty = N.S.J), and in the number of
closed-arm entries (considered as a measure of locomotion in the
maze) ([Psex) = N.S.; Ptreat) = N.S.; Pisex x treaty = N.S.J, data not shown).
Also, the number of stretched-attend postures (SAP) ([piex) = N.S.;
Pitreaty = N.S.; Pisex x treaty = N.S.], data not shown) and the number of
exploratory head dips (HDIPS) ([Psexy = NS Pireaty < -05;
Psex x treaty = N.S.J, data not shown) were not influenced by in utero
WIN exposure in neither the male offspring nor the female offspring.

Regarding their cognitive abilities, prepubertal CTRL- and WIN-
exposed animals of both sexes displayed identical discrimination

index (Figure 3e: [psex) = N.S.; Pitreaty = N.S; Prsex x treaty = N.S.J) and
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exploration time (Figure 3f: [Dgexy = N.S;; Preaty = NS5 Plsex x
treaty = N.S.]) in the temporal order memory task. Thus, prenatal WIN
exposure did not induce deficits in social play, anxiety-like behav-
iours and temporal order memory in the progeny of both sexes at

the prepubertal period.

44 | Prenatal exposure to the cannabinoid
receptor agonist WIN did not induce deficits in social
play, anxiety-like behaviours and changes in temporal
order memory in the pubertal progeny

When tested in the pubertal period, no differences in social play
behaviour were found between WIN and CTRL prenatally exposed
rats. Thus, pinning (Figure 4a: [psex) < -05; Pitreat) = N-S; P(sex x treat) = N.
s.]) and pouncing (Figure 4b: [psex) = N.S.; Ptreat) = N.S.; Psex x treat) = N.
s.]) frequencies were similar in WIN and CTRL animals in both sexes,
suggesting no main effects of in utero cannabinoid exposure on social

play behaviour at pubescence. Moreover, the time spent in general
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like sniffing) was unchanged during the 15-min session ([pgex) = N.S.;
P(treaty = N.S.; P(sex x treat) = N.S.], data not showed).

Further, no differences between WIN and CTRL prenatally
exposed rats were found in the elevated plus-maze. Specifically, there
was no change in the percentage of time spent in the open arms of
the maze (Figure 4c¢: [psex) < -05; Pitreat) = NS5 P(sex x treaty = N.S.J), in
the percentage of open arm entries (Figure 4d: [P(sex) < -05; Pitreaty = N.
S.; Psex x treaty = N.S.]), in the number of closed-arm entries ([P(sex) = N.S.;
Ptreat) = N.S.; Plsex x treat) = N.5.], data not shown), in SAP ([psex) = N.S.;
Ptreaty = N-S-; Prsex x treat) = N-S.J, data not shown), and HDIPS ([psex = N.
S.; P(treat) = N.S.; Pisex x treat) = N.S.], data not shown). When tested in
the temporal order memory task, pubertal animals displayed identical
discrimination index (Figure 4e: [Psexy = NS Pireaty = NS
Piex x treaty = N.S.J) and exploration time (Figure 4f: [pgexy = N.S.;
Pitreaty = N.S; Pisex x treaty = N.S.]), suggesting an intact temporal order
memory. Collectively, these results show that prenatal WIN exposure
did not induce deficits in social play, anxiety-like behaviours, and tem-

poral order memory in the progeny at pubescence.

receptors corrected the behavioural deficits induced
by prenatal exposure to the cannabinoid receptor
agonist WIN in the male offspring at infancy

Our previous works demonstrated the ability of mGlus positive allo-
steric modulation to correct synaptic and behavioural deficits induced
by prenatal WIN exposure at adulthood (Bara et al., 2018). Along this
line, we found that systemic treatment with the positive allosteric
modulator of mGlus receptors CDPPB (1.5 mg, i.p.) at PND 10 normal-
ized the altered USV profile displayed by WIN-exposed pups but
remained without effect in the CTRL group, indicating selectivity of
the drug effects to the disease-state (Figure 5a: [pwiN in utero) = N.S.;
P(coppB) = NS.; PWIN in utero x coppe < -05]). Specifically, post hoc analy-
sis revealed that CDPPB rescued the decrease of USVs induced by in
utero WIN treatment at PND10 in the male offspring. Furthermore,
we found that potentiating mGlus signalling by CDPPB administration
normalized the hyperlocomotion induced by prenatal exposure to
WIN in the male offspring tested in the homing behaviour test at
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Positive allosteric modulation of mGlus receptors normalizes the communicative and locomotor deficits displayed by male pups

prenatally exposed to WIN. (a) Systemic administration of CDPPB (1.5 mg-kg™?, i.p.) at PND 10 rescued the decrease in the rate of USVs in male
rats prenatally exposed to WIN without affecting the USV frequency in the CTRL group (males CTRL: VEH n = 8, CDPPB n = 8; males WIN: VEH
n =8, CDPPB n = 8). (b) In the homing behaviour, treatment with CDPPB (1.5 mg-kg™2, i.p.) at PND 13 corrects the increase in the frequency of
crossing in male rats prenatally exposed to WIN without affecting the number of crossing in the CTRL group (males CTRL: VEH n = 8, CDPPB

n = 8; males WIN: VEH n = 8, CDPPB n = 10). Scatter dot plot represents each animal. Error bars indicate SEM. P < .05. Student-Newman-

Keuls test

PND 13 (Figure 5b: [pwiN in utero) < -05; Pcoppe) = N.S.; PWIN in
utero x copp) < -05) without affecting the number of crossing in the
CTRL group. Overall, these data show that potentiating mGlus signal-
ling normalized the behavioural deficits induced by prenatal exposure
to cannabinoids in the infant offspring.

5 | DISCUSSION

In the present study, we have demonstrated for the first time that
fetal exposure to cannabinoids, in the present case the synthetic can-
nabinoid WIN55,212-2, causes sex-specific mGlus-related behavioural
alterations in the progeny at early developmental periods. Specifically,
we found that prenatal exposure to WIN altered isolation-induced
USVs and locomotor activity in the male but not female infant rat off-
spring. Conversely, the social, emotional and cognitive profile was
spared in the offspring of both sexes tested at the prepubertal and
pubertal periods. Interestingly, potentiating mGlusR signalling
reverted the early behavioural deficits displayed by WIN-exposed
infant male rats. Infant rodents produce USVs in response to separa-
tion from the mother and the nest, and USVs are a potent tool to
detect subtle effects of adverse events during development (Branchi,
Santucci, & Alleva, 2001; Branchi, Santucci, & Alleva, 2006; Cuomo,
De Salvia, Maselli, Santo, & Cagiano, 1987; Insel, Hill, & Mayor, 1986).
It has previously been shown that cannabinoid exposure during preg-
nancy and/or lactation alters isolation-induced USVs (Antonelli et al.,
2005; Trezza et al., 2008). These early studies, however, were only
performed in the male offspring, while the consequences induced by
developmental cannabinoid exposure in the female offspring were not
investigated. Here, we report that male but not female WIN-exposed
pups display a decreased rate of isolation-induced USVs compared to
control rats. Whether the decreased USV emission displayed by WIN-
exposed male pups could be the consequence of an altered maternal

responsiveness, which is one of the factors tuning the rate of USV

emission of the offspring (D'Amato, Scalera, Sarli, & Moles, 2005), is
an interesting issue that deserves further investigation. Related to
this, previous studies reported disrupted maternal behaviour in lactat-
ing rats exposed to very high doses of THC (Bromley, Rabii, Gordon, &
Zimmerman, 1978; Navarro et al., 1995). Conversely, other authors
failed to detect changes in maternal care in rhesus monkeys exposed
to low doses of THC during pregnancy and lactation (Golub,
Sassenrath, & Chapman, 1981). Recently, it has been shown that THC
administered to pregnant mice (GD 5.5-GD 17.5) at a “non-intoxicat-
ing” daily dose (3 mgkg™, i.p.) did not alter maternal behaviour or
physical measures (Tortoriello et al., 2014), suggesting that moderate
doses of cannabinoid should not alter maternal behaviour and in turn
influence mum-pup interaction. By this evidence, we cannot certainly
exclude that prenatal exposure to low doses of WIN (0.5 mg-kg™2, s.c.)
may induce any alteration in maternal behaviour which in turn may
contribute to the altered pattern of emotionality displayed by WIN-
exposed male pups. Therefore, this issue still remains unresolved.

The synthetic cannabinoid receptor agonist used in this study
(i.e. WIN) has effects that are highly comparable to those of the main
active principle of cannabis THC, regardless that they differ in affinity
at CB1 receptors and profile of action (Compton et al., 1992; Wiley &
Martin, 2002). Therefore, we surmise that the sex-specific behavioural
deficits we here observed at early life stages after prenatal WIN expo-
sure could be similar to those obtained by administering THC during
the prenatal period. In support of this hypothesis, we recently demon-
strated that prenatal THC administration (from GD 5 to GD 20)
induced similar sex-specific synaptic deficits in the prefrontal cortex
of adult rats, without any sign of toxicity and/or gross malformations
in the rat offspring as WIN did (Bara et al., 2018). However, in a
recent inhalation mouse study, a dose of ~0.5 mg-kg™t-day™* THC
smoke from GD 5.5 to GD 17.5 produced deficits in fetal growth and
reduced birth weights in cannabis-exposed male offspring suggesting
that low-dose exposure to THC via inhalation can compromise fetal
development (Benevenuto et al, 2017). This highlights that
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differences in the treatment schedule, routes of administration, doses
and animal strain may account for different results following in utero
cannabinoid exposure.

During the early phases of postnatal life, olfaction, and in particu-
lar the learned association between maternal odours and maternal
stimulation, is crucial for the development of social behaviour and
social recognition (Terry & Johanson, 1996). Therefore, we tested the
infant offspring in the homing behaviour test, which requires intact
sensory, olfactory and motor capabilities that allow the pup to recog-
nize the mother's odour among others (Bignami, 1996). Both WIN-
exposed male and female pups were able to use olfactory cues to dis-
criminate between a neutral odour and their own home cage odour.
Interestingly, however, locomotor activity in the test arena was
increased specifically in prenatally WIN-exposed male rats, while
females were spared, suggesting a sex-dependent detrimental effects
of prenatal WIN exposure on early life locomotor activity. Maternal
exposure to cannabinoid drugs during pregnancy and/or lactation
might particularly affect the ontogeny of motor behaviours: an age-
dependent hyperlocomotion has been reported in the lactating off-
spring of mothers receiving THC (during GD 6-12; Borgen, Lott, &
Davis, 1973). Other studies demonstrated that rats prenatally and/or
postnatally exposed to cannabinoids displayed motor hyperactivity at
infancy and adolescence but not at adulthood (Bara et al., 2018;
Mereu et al., 2003; Navarro et al., 1995; Silva, Zhao, Popp, & Dow-
Edwards, 2012). These preclinical studies are in line with human data
showing that children of both sexes prenatally exposed to cannabis
are hyperactive and impulsive starting around age 6 (Fried & Smith,
2001; Goldschmidt, Richardson, Cornelius, & Day, 2004; Sharapova
et al., 2018). Altogether, the abnormal USV profile and locomotor
activity displayed by WIN-exposed male pups indicate the presence
of sex-specific deficits in social communication and locomotion at
early life stages. Previous evidence suggested that prenatal exposure
to WIN permanently alters GABA and glutamate circuits in the pre-
frontal cortex and hippocampus of the offspring (Antonelli et al.,
2004; Antonelli et al.,, 2005; Mereu et al., 2003; Saez, Aronne, Cal-
tana, & Brusco, 2014). Notably, a reduction in cortical glutamatergic
neurotransmission and NMDA receptor activity has been reported
(Antonelli et al., 2005; Mereu et al., 2003). These alterations might
result in an inappropriate assembly of neuronal network that could
represent a substrate for the observed emotional and locomotor dys-
functions displayed by the WIN-exposed male offspring. Based on this
experimental evidence and the prominent role of mGlusR in synaptic
endocannabinoid-mediated signalling (Araque et al., 2017), we tested
the ability of CDPPB, a well-described positive allosteric modulator of
mGlusRs, to rescue the behavioural deficits displayed by WIN-
exposed male pups. We found that systemic administration of CDPPB
normalized the altered USVs profile and the increased locomotion
induced in male pups by prenatal WIN exposure. This finding extends
our previous data demonstrating the ability of mGlu5 positive alloste-
ric modulation to correct synaptic and behavioural deficits induced by
prenatal cannabinoid exposure at adulthood (Bara et al, 2018).
Female did not show the behavioural deficits displayed by the male

offspring at infancy, however we cannot exclude that the

administration of CDPPB per se could affect their USVs and homing
performances since CDPPB is known to affect cognitive and operant
responding tasks in rodents (Cleva & Olive, 2012; Fowler et al., 2013;
Lee, Coelho, Class, & Szumlinski, 2018). In the present study, we used
a dose of CDPPB (1.5 mg-kg™?) that did not affect early life behav-
ioural parameters (i.e. USVs and homing behaviour) in the CTRL male
progeny, therefore we hypothesize that the same dose would not
have an effect per se in the female progeny. Related to this, it should
be considered that prenatal exposure to WIN induced sex-related dif-
ferences in the postsynaptic mGIuR proteins at adulthood (Bara et al.,
2018) and that mGlusR modulate spine plasticity in the nucleus
accumbens of female mice depending on oestrogen receptors
(Peterson, Mermelstein, & Meisel, 2015), suggesting the importance
of sex-dependent specificity of the mGIuR signalling in the brain.
Moreover, it remains to clarify how prenatal WIN exposure
induces sex-specific detrimental behavioural effects at early life
stages. Different studies have focused on the sexual dimorphism of
the endocannabinoid system, which could explain at least in part the
sex dissimilarities in the consequences induced by in utero cannabi-
noid exposure. Beside molecular and structural differences (Castelli
et al, 2014; Garrett & Wellman, 2009; Rodriguez de Fonseca,
Cebeira, Ramos, Martin, & Fernandez-Ruiz, 1994), prenatal exposure
to cannabinoids throughout gestation induces sex-specific effects on
dopaminergic neurotransmission in the limbic forebrain (Alpar, Di
Marzo, & Harkany, 2016; Navarro et al., 1995; Rodriguez de Fonseca,
Cebeira, Fernandez-Ruiz, Navarro, & Ramos, 1991) and also changes
in the ontogenetic expression of TH gene (Navarro et al., 1995).
Moreover, sex-differences in mRNA expression levels for mGlu,R
have been reported in the prefrontal cortex of adult rats prenatally
exposed to WIN, with an increase in mGlu;R mRNA levels exclusively
in the male progeny (Bara et al, 2018). In humans, impaired
dopamine D, receptor expression in amygdala is most evident in
males in association with prenatal cannabis exposure suggesting a
potential pathway for altered emotional regulation (Wang et al.,
2004). Interestingly, 10-year-old boys prenatally exposed to mari-
juana are more susceptible to behavioural problems than girls
(Goldschmidt et al., 2004). However, the neurobiological mechanisms
underlying maternal exposure to cannabinoids still remain complex.
Changes in the epigenetic role of steroid hormones (both sex-
steroids and glucocorticoids) on brain development induced by pre-
natal cannabinoid exposure could be responsible for some specific
behavioural effects that we here found at early life stages. Indeed, it
has been proposed that the epigenetic effects of abused drugs
including marijuana on brain development might be the result of both
drug mimicking or modification of the action of natural hormones,
which play a very important role in neuronal phase during early
stages of brain development and cortical organization during perina-
tal ages in rodents (Navarro et al., 1995). Moreover, marijuana expo-
sure in early fetal life also decreases the expression of genes
(through histone lysine methylation) for dopamine D, receptors in
brain areas mediating rewarding processes (i.e. nucleus accumbens)
which may explain higher rates of drug addiction in adults exposed

prenatally to marijuana (DiNieri et al.,, 2011). Prenatal exposure to
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THC also causes substantial changes in gene expression levels of sev-
eral other significant systems in the brain that are linked to the endo-
cannabinoid signalosome such as the opioid, glutamate and GABA
systems, which may persist well into adulthood (Jutras-Aswad,
DiNieri, Harkany, & Hurd, 2009; Navarro et al., 1995) and sex-depen-
dently affect behavioural outcomes since early life stages.

Profound changes in behavioural repertoire and physiological sta-
tus occur between weaning and puberty; it is during this stage that
mammals progressively achieve sexual maturation and establish a sense
of independence from their primary caregivers (Spear, 2000;
Vanderschuren et al., 2016). This process of development involves sev-
eral behavioural processes influenced by endocannabinoid signalling
(Hill & Tasker, 2012; Solinas, Goldberg, & Piomelli, 2008; Zanettini
et al.,, 2011). We here showed that prenatally WIN-exposed animals of
both sexes did not exhibit deficits in social play, neither anxious-like
behaviours in the elevated plus-maze test nor cognitive deficits in tem-
poral order memory at the prepubertal and pubertal periods. The endo-
cannabinoid system has a strong interaction with different
neurotransmitters present from early stages of brain development
(Alpar et al., 2016). It could be that in utero WIN administration induced
mGIuR sex-mediated deficits at early life stages (as we found in the pre-
sent study) and then the reorganization of this system occurs and dif-
ferent targets (such as dopamine or opioids) become predominant in
mediating specific motivational, rewarding and emotional processes
that we here did not explore. For instance, prenatal THC-induced reor-
ganization of the dopamine system occurs within this sensitive period
and might disrupt reward circuits by genetic and epigenetic modifica-
tions (DiNieri et al., 2011; Spano, Ellgren, Wang, & Hurd, 2007).

Previous findings from our group demonstrated that perinatal
exposure to THC (GD 15 to PND 9) altered social play and induced
anxiety-like behaviours in the male rat offspring (Trezza et al., 2008).
Moreover, it has been recently shown that the postnatal exposure to
the cannabinoid receptor agonist CP 55,940 from PND 4 to PND
10, a period of brain development equivalent to the third trimester in
human, increased the time spent in the open arms of the elevated
plus-maze in offspring of both sexes at prepubertal period (Breit,
Zamudio, & Thomas, 2019). We here showed that prenatally WIN-
exposed animals of both sexes did not exhibit anxious-like behaviours
in the elevated plus-maze. The discrepancy with our present findings
may depend on the different cannabinoid agonists used (THC or CP
55,940 vs. WIN) and the treatment schedule (perinatal or postnatal
vs. prenatal exposure). Moreover, it is possible that a longer activation
of endocannabinoid neurotransmission that extends beyond birth till
after the early postnatal period may be required to disrupt social play
behaviour and to induce an anxious-like phenotype in the elevated
plus-maze.

Furthermore, social play behaviour (van Kerkhof, Damsteegt,
Trezza, Voorn, & Vanderschuren, 2013) and temporal order memory
(Barker et al., 2007) are mediated by functional activity in the prefron-
tal cortex and certain levels of regional frontal specificity to the
effects of prenatal cannabinoid exposure have been demonstrated
(Bara et al., 2018). The fact that the prefrontal cortex develops late in
to postnatal life (i.e. late adolescence/early adulthood; Arain et al.,
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2013; Kolb et al., 2012) and that temporal order memory requires cor-
tical more than hippocampal integrity (Barker et al., 2017) may explain
the normal behaviour of (pre)pubertal WIN-exposed rats in these
tasks compared to their impaired performance when tested for other
forms of memory (Antonelli et al., 2005; Castaldo et al., 2007;
Drazanova et al., 2019; Ferraro et al., 2009; Mereu et al., 2003). Fur-
ther, it can be hypothesized that perturbations of the fetal endo-
cannabinoid system induced by in utero exposure to WIN predisposed
the offspring to abnormalities in memory and altered emotionality
later in life (Richardson et al., 2016): Thus, WIN in utero induced an
imbalanced brain circuit at sub-threshold levels (non-manifested dur-
ing prepubescent and pubescent period) that can precipitate neu-
rodevelopmental disease by otherwise sub-threshold stimuli later in
life (Bara et al., 2018; Campolongo et al., 2007; Mereu et al., 2003;
Tortoriello et al., 2014; Trezza et al., 2008; Vargish et al., 2017).
Overall, our results clearly show previously undisclosed sexual
divergence in the consequences of fetal cannabinoids at early stages
providing new impetus for the urgent need to investigate the func-
tional and behavioural substrates of prenatal cannabinoid exposure in

both male and female offspring.

ACKNOWLEDGEMENTS

This study was supported by Marie Curie Career Reintegration Grant
PCIG09-GA-2011-293589 (V.T.), Jerome Lejeune Foundation
Research Grant 1674 (V.T.), and by L'Oreal-UNESCO Pour les
Femmes et la Science Individual Fellowship (A.M.).

AUTHOR CONTRIBUTIONS

AM., FM, MS,, and S.S. performed, analysed, and contributed to the
design of the behavioural experiments. O.M. and V.T. contributed to
the design of the experiments and edited the manuscript. AM., O.M.,
and V.T. supervised the project, designed the experiments and wrote

the manuscript.

CONFLICT OF INTEREST

The authors declare that, except for income received from their pri-
mary employers, no financial support or compensation has been
received from any individual or corporate entity over the past five
years for research or professional service and there are no personal
financial holdings that could be perceived as constituting a potential

conflict of interest.

DECLARATION OF TRANSPARENCY AND SCIENTIFIC
RIGOUR

This Declaration acknowledges that this paper adheres to the princi-
ples for transparent reporting and scientific rigour of preclinical
research as stated in the BJP guidelines for Design & Analysis, and
Animal Experimentation, and as recommended by funding agencies,
publisher and other organisations engaged with supporting research.

ORCID
Antonia Manduca ‘2 https://orcid.org/0000-0001-9730-2467

Viviana Trezza ¥ https://orcid.org/0000-0002-3922-6045

85UB01 7 SUOWILLIOD AR deot (dde 8y Aq peuenob ke spiie VO ‘88N 4O S3|NJ o Akeiq 18Ul UO 8|1 UO (SUORIPUOD-pUE-SWIBIALI0D" A3 | 1M Afe.q | [BulJUO//SA]Y) SUORIPUOD PUe SWB | 8U3 89S *[6202/60/ET] UO AreiqiTauliuo AB|IM ‘6.8 T Uda/TTTT OT/10pAL00 A8 M AReiq U juosqndsday/:sdny Wwo.j papeojumoq ‘Z ‘0202 ‘T8ES9LYT


https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=50
https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14207
https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14206
https://orcid.org/0000-0001-9730-2467
https://orcid.org/0000-0001-9730-2467
https://orcid.org/0000-0002-3922-6045
https://orcid.org/0000-0002-3922-6045

MANDUCAET AL.

BRITISH
460 PHARMACOLOGICAL
SOCIETY

REFERENCES

Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A,,
Peters, J. A, et al. (2019). The Concise Guide to PHARMACOLOGY
2018/19: G protein-coupled receptors. British Journal of Pharmacology,
176,521-S141.

Alpar, A., Di Marzo, V., & Harkany, T. (2016). At the tip of an iceberg: Pre-
natal marijuana and its possible relation to neuropsychiatric outcome
in the offspring. Biological Psychiatry, 79(7), e33-e45.

Antonelli, T., Tanganelli, S., Tomasini, M. C., Finetti, S., Trabace, L.,
Steardo, L., ... Ferraro, L. (2004). Long-term effects on cortical gluta-
mate release induced by prenatal exposure to the cannabinoid recep-
tor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)
pyrrolo[1,2,3-de]-1,4-benzo xazin-6-yl]-1-naphthalenylmethanone: An
in vivo microdialysis study in the awake rat. Neuroscience, 124(2),
367-375. https://doi.org/10.1016/j.neuroscience.2003.10.034

Antonelli, T., Tomasini, M. C., Tattoli, M., Cassano, T., Tanganelli, S.,
Finetti, S., ... Ferraro, L. (2005). Prenatal exposure to the CB1 receptor
agonist WIN 55,212-2 causes learning disruption associated with
impaired cortical NMDA receptor function and emotional reactivity
changes in rat offspring. Cerebral Cortex, 15(12), 2013-2020. https://
doi.org/10.1093/cercor/bhi076

Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W,, Rais, A,, ... Sharma, S.
(2013). Maturation of the adolescent brain. Neuropsychiatric
Disease and Treatment, 9, 449-461. https://doi.org/10.2147/NDT.
S39776

Araque, A., Castillo, P. E., Manzoni, O. J., & Tonini, R. (2017). Synaptic
functions of endocannabinoid signaling in health and disease. Neuro-
pharmacology, 124, 13-24.

Bara, A., Manduca, A., Bernabeu, A., Borsoi, M., Serviado, M., Lassalle, O.,
... Manzoni, O. J. (2018). Sex-dependent effects of in utero cannabi-
noid exposure on cortical function. elife, 7, 1-31. https://doi.org/10.
7554/elife.36234

Barker, G. R., Banks, P. J., Scott, H., Ralph, G. S., Mitrophanous, K. A,
Wong, L. F., ... Warburton, E. C. (2017). Separate elements of episodic
memory subserved by distinct hippocampal-prefrontal connections.
Nature Neuroscience, 20(2), 242-250. https://doi.org/10.1038/nn.
4472

Barker, G. R, Bird, F., Alexander, V., & Warburton, E. C. (2007). Recogni-
tion memory for objects, place, and temporal order: A disconnection
analysis of the role of the medial prefrontal cortex and perirhinal cor-
tex. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 27(11), 2948-2957.

Beckman, D. A., & Feuston, M. (2003). Landmarks in the development of
the female reproductive system. Birth Defects Research. Part B, Devel-
opmental and Reproductive Toxicology, 68(2), 137-143.

Benevenuto, S. G., Domenico, M. D., Martins, M. A., Costa, N. S., de
Souza, A. R, Costa, J. L., ... Veras, M. M. (2017). Recreational use of
marijuana during pregnancy and negative gestational and fetal out-
comes: An experimental study in mice. Toxicology, 376, 94-101.
https://doi.org/10.1016/j.tox.2016.05.020

Berghuis, P., Rajnicek, A. M., Morozov, Y. M., Ross, R. A., Mulder, J.,
Urban, G. M,, ... Harkany, T. (2007). Hardwiring the brain: Endo-
cannabinoids shape neuronal connectivity. Science, 316(5828),
1212-1216. https://doi.org/10.1126/science.1137406

Bignami, G. (1996). Economical test methods for developmental neuro-
behavioral toxicity. Environmental Health Perspectives, 104(Suppl 2),
285-298.

Borgen, L. A, Lott, G. C., & Davis, W. M. (1973). Cannabis-induced hypo-
thermia: A dose-effect comparison of crude marihuana extract and
synthetic 9-tetrahydrocannabinol in male and female rats. Research
Communications in Chemical Pathology and Pharmacology, 5(3),
621-626.

Branchi, ., Santucci, D., & Alleva, E. (2001). Ultrasonic vocalisation emitted
by infant rodents: A tool for assessment of neurobehavioural develop-
ment. Behavioural Brain Research, 125(1-2), 49-56.

Branchi, I., Santucci, D., & Alleva, E. (2006). Analysis of ultrasonic vocaliza-
tions emitted by infant rodents. Current Protocols in Toxicology, Chap-
ter 13. Unit13 12, 1-14.

Breit, K. R., Zamudio, B., & Thomas, J. D. (2019). The effects of alcohol and
cannabinoid exposure during the brain growth spurt on behavioral
development in rats. Birth Defects Research, 111, 760-774. https://
doi.org/10.1002/bdr2.1487

Bromley, B. L., Rabii, J., Gordon, J. H., & Zimmerman, E. (1978). A%-
tetrahydrocannabinol inhibition of suckling-induced prolactin release
in the lactating rat. Endocrine Research Communications, 5(4), 271-278.

Brown, A. (2017). Breastfeeding as a public health responsibility: A review
of the evidence. Journal of Human Nutrition and Dietetics : The Official
Journal of the British Dietetic Association, 30(6), 759-770.

Calvigioni, D., Hurd, Y. L., Harkany, T., & Keimpema, E. (2014). Neuronal
substrates and functional consequences of prenatal cannabis expo-
sure. European Child & Adolescent Psychiatry, 23(10), 931-941.

Campolongo, P., Trezza, V., Cassano, T., Gaetani, S., Morgese, M. G,
Ubaldi, M, Cuomo, V. (2007). Perinatal exposure to A°-
tetrahydrocannabinol causes enduring cognitive deficits associated
with alteration of cortical gene expression and neurotransmission in
rats. Addiction Biology, 12(3-4), 485-495.

Castaldo, P., Magi, S., Gaetani, S., Cassano, T., Ferraro, L., Antonelli, T,, ...
Cuomo, V. (2007). Prenatal exposure to the cannabinoid receptor ago-
nist WIN 55,212-2 increases glutamate uptake through over-
expression of GLT1 and EAAC1 glutamate transporter subtypes in rat
frontal cerebral cortex. Neuropharmacology, 53(3), 369-378. https://
doi.org/10.1016/j.neuropharm.2007.05.019

Castelli, M. P, Fadda, P., Casu, A., Spano, M. S., Casti, A., Fratta, W., &
Fattore, L. (2014). Male and female rats differ in brain cannabinoid
CB1 receptor density and function and in behavioural traits
predisposing to drug addiction: effect of ovarian hormones. Current
Pharmaceutical Design, 20(13), 2100-2113. https://doi.org/10.2174/
13816128113199990430

Cleva, R. M., & Olive, M. F. (2012). mGlu receptors and drug addiction.
Wiley Interdisciplinary Reviews. Membrane Transport and Signaling, 1(3),
281-295.

Compton, D. R, Johnson, M. R., Melvin, L. S., & Martin, B. R. (1992). Phar-
macological profile of a series of bicyclic cannabinoid analogs: Classifi-
cation as cannabimimetic agents. The Journal of Pharmacology and
Experimental Therapeutics, 260(1), 201-209.

Crume, T. L., Juhl, A. L., Brooks-Russell, A., Hall, K. E., Wymore, E., &
Borgelt, L. M. (2018). Cannabis use during the perinatal period in a
state with legalized recreational and medical marijuana: The associa-
tion between maternal characteristics, breastfeeding patterns, and
neonatal outcomes. The Journal of Pediatrics, 197, 90-96.

Cuomo, V., De Salvia, M. A, Maselli, M. A, Santo, L., & Cagiano, R. (1987).
Ultrasonic calling in rodents: A new experimental approach in behav-
ioural toxicology. Neurotoxicology and Teratology, 9(2), 157-160.

Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, G. H.,
Giembycz, M. A, ... Ahluwalia, A. (2018). Experimental design and
analysis and their reporting Il: updated and simplified guidance for
authors and peer reviewers. British Journal of Pharmacology, 175(7),
987-993. https://doi.org/10.1111/bph.14153

D'Amato, F. R, Scalera, E., Sarli, C., & Moles, A. (2005). Pups call, mothers
rush: Does maternal responsiveness affect the amount of ultrasonic
vocalizations in mouse pups? Behavior Genetics, 35(1), 103-112.

DiNieri, J. A, Wang, X., Szutorisz, H., Spano, S. M., Kaur, J., Casaccia, P., ...
Hurd, Y. L. (2011). Maternal cannabis use alters ventral striatal dopa-
mine D2 gene regulation in the offspring. Biological Psychiatry, 70(8),
763-769. https://doi.org/10.1016/j.biopsych.2011.06.027

Drazanova, E., Ruda-Kucerova, J., Kratka, L., Stark, T., Kuchar, M.,
Maryska, M,, ... Micale, V. (2019). Different effects of prenatal MAM
vs. perinatal THC exposure on regional cerebral blood perfusion
detected by arterial spin labelling MRI in rats. Scientific Reports, 9(1),
10. 6062. https://doi.org/10.1038/s41598-019-42532-z

95UB917 SUOLWLLOD aA 1R 9dedl|dde ay) Aq peuseAob afe sopiLe VO ‘SN J0 S3|NJ 10} AleiqiTauljuQ 48]\ UO (SUONIPUOD-PpUe-SLLLIB)W0Y A3 | 1M Ale.q 1[pulUo//SAny) SUONIPUOD pue Wi 1 8u) 885 *[5202/60/ST] Uo Ariqiauliuo Ao|IM ‘6/87T Uda/TTTT OT/I0p/wod A3 | Areiqjputjuo sgndsda//sdny wouy pepeojumod ‘g ‘0202 ‘T8ES9LYT


https://doi.org/10.1016/j.neuroscience.2003.10.034
https://doi.org/10.1093/cercor/bhi076
https://doi.org/10.1093/cercor/bhi076
https://doi.org/10.2147/NDT.S39776
https://doi.org/10.2147/NDT.S39776
https://doi.org/10.7554/eLife.36234
https://doi.org/10.7554/eLife.36234
https://doi.org/10.1038/nn.4472
https://doi.org/10.1038/nn.4472
https://doi.org/10.1016/j.tox.2016.05.020
https://doi.org/10.1126/science.1137406
https://doi.org/10.1002/bdr2.1487
https://doi.org/10.1002/bdr2.1487
https://doi.org/10.1016/j.neuropharm.2007.05.019
https://doi.org/10.1016/j.neuropharm.2007.05.019
https://doi.org/10.2174/13816128113199990430
https://doi.org/10.2174/13816128113199990430
https://doi.org/10.1111/bph.14153
https://doi.org/10.1016/j.biopsych.2011.06.027
https://doi.org/10.1038/s41598-019-42532-z

MANDUCAET AL.

El Marroun, H., Brown, Q. L., Lund, I. O., Coleman-Cowger, V. H., Loree, A. M.,
Chawla, D., & Washio, Y. (2018). An epidemiological, developmental and
clinical overview of cannabis use during pregnancy. Preventive Medicine,
116, 1-5. https://doi.org/10.1016/j.ypmed.2018.08.036

Ferraro, L., Tomasini, M. C., Beggiato, S., Gaetani, S., Cassano, T.,
Cuomo, V., ... Antonelli, T. (2009). Short- and long-term consequences
of prenatal exposure to the cannabinoid agonist WIN55,212-2 on rat
glutamate transmission and cognitive functions. Journal of Neural
Transmission (Vienna), 116(8), 1017-1027. https://doi.org/10.1007/
s00702-009-0230-0

Fowler, S. W., Walker, J. M., Klakotskaia, D., Will, M. J., Serfozo, P.,
Simonyi, A., & Schachtman, T. R. (2013). Effects of a metabotropic
glutamate receptor 5 positive allosteric modulator, CDPPB, on
spatial learning task performance in rodents. Neurobiology of
Learning and Memory, 99, 25-31. https://doi.org/10.1016/j.nlm.2012.
10.010

French, E. D., Dillon, K., & Wu, X. (1997). Cannabinoids excite dopamine
neurons in the ventral tegmentum and substantia nigra. Neuroreport, 8
(3), 649-652.

Fried, P. A. (2002). Conceptual issues in behavioral teratology and their
application in determining long-term sequelae of prenatal marihuana
exposure. Journal of Child Psychology and Psychiatry, and Allied Disci-
plines, 43(1), 81-102.

Fried, P. A., & Smith, A. M. (2001). A literature review of the consequences
of prenatal marihuana exposure. An emerging theme of a deficiency in
aspects of executive function. Neurotoxicology and Teratology, 23
(1), 1-11.

Fried, P. A., Watkinson, B., & Gray, R. (1998). Differential effects on cogni-
tive functioning in 9- to 12-year olds prenatally exposed to cigarettes
and marihuana. Neurotoxicology and Teratology, 20(3), 293-306.

Garrett, J. E., & Wellman, C. L. (2009). Chronic stress effects on dendritic
morphology in medial prefrontal cortex: sex differences and estrogen
dependence. Neuroscience, 162(1), 195-207.

Goldschmidt, L., Richardson, G. A., Cornelius, M. D., & Day, N. L. (2004).
Prenatal marijuana and alcohol exposure and academic achievement at
age 10. Neurotoxicology and Teratology, 26(4), 521-532.

Golub, M. S., Sassenrath, E. N., & Chapman, L. F. (1981). Mother-infant
interaction in rhesus monkeys treated clinically with A°-tetrahydro-
cannabinol. Child Development, 52(1), 389-392.

Grant, K., Campbell, V., & Beckert, L. (2018). Cannabis-don't smoke it! Four
cannabis-related pathologies in one radiograph. The New Zealand Med-
ical Journal, 131(1471), 84-85.

Harding, S. D., Sharman, J. L., Faccenda, E., Southan, C., Pawson, A. J.,
Ireland, S., ... NC-IUPHAR (2018). The IUPHAR/BPS Guide to PHAR-
MACOLOGY in 2018: Updates and expansion to encompass the new
guide to immunopharmacology. Nucleic Acids Research, 46(D1),
D1091-D1106. https://doi.org/10.1093/nar/gkx1121

Harkany, T., Guzman, M., Galve-Roperh, |., Berghuis, P., Devi, L. A, &
Mackie, K. (2007). The emerging functions of endocannabinoid signal-
ing during CNS development. Trends in Pharmacological Sciences, 28(2),
83-92.

Hill,, M. N., & Tasker, J. G. (2012). Endocannabinoid signaling,
glucocorticoid-mediated negative feedback, and regulation of the
hypothalamic-pituitary-adrenal axis. Neuroscience, 204, 5-16.

Huizink, A. C. (2014). Prenatal cannabis exposure and infant outcomes:
Overview of studies. Progress in Neuro-Psychopharmacology & Biologi-
cal Psychiatry, 52, 45-52.

Huizink, A. C., & Mulder, E. J. (2006). Maternal smoking, drinking or canna-
bis use during pregnancy and neurobehavioral and cognitive function-
ing in human offspring. Neuroscience and Biobehavioral Reviews, 30(1),
24-41.

Hutchings, D. E., Gamagaris, Z., Miller, N., & Fico, T. A. (1989). The effects
of prenatal exposure to A’-tetrahydrocannabinol on the rest-activity
cycle of the preweanling rat. Neurotoxicology and Teratology, 11(4),
353-356.

BRITISH
B PHARMACOLOGICAL 461
SOCIETY

Insel, T. R, Hill, J. L., & Mayor, R. B. (1986). Rat pup ultrasonic isolation
calls: Possible mediation by the benzodiazepine receptor complex.
Pharmacology, Biochemistry, and Behavior, 24(5), 1263-1267.

Jung, K. M., Sepers, M., Henstridge, C. M., Lassalle, O., Neuhofer, D.,
Martin, H., ... Manzoni, O. J. (2012). Uncoupling of the endo-
cannabinoid signalling complex in a mouse model of fragile X syn-
drome. Nature Communications, 3, 11. 1080. https://doi.org/10.1038/
ncomms2045

Jutras-Aswad, D., DiNieri, J. A., Harkany, T., & Hurd, Y. L. (2009). Neurobi-
ological consequences of maternal cannabis on human fetal develop-
ment and its neuropsychiatric outcome. European Archives of
Psychiatry and Clinical Neuroscience, 259(7), 395-412.

Katona, I., & Freund, T. F. (2008). Endocannabinoid signaling as a synaptic
circuit breaker in neurological disease. Nature Medicine, 14(9),
923-930.

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G.
(2010). Improving bioscience research reporting: The ARRIVE guide-
lines for reporting animal research. PLoS Biology, 8(6), 1-5. €1000412.

Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R.
(2012). Experience and the developing prefrontal cortex. Proceedings
of the National Academy of Sciences of the United States of America,
109(Suppl 2), 17186-17193.

Korenbrot, C. C., Huhtaniemi, I. T., & Weiner, R. I. (1977). Preputial separa-
tion as an external sign of pubertal development in the male rat. Biol-
ogy of Reproduction, 17(2), 298-303.

Lafourcade, M., Elezgarai, |, Mato, S., Bakiri, Y., Grandes, P., &
Manzoni, O. J. (2007). Molecular components and functions of the
endocannabinoid system in mouse prefrontal cortex. PLoS ONE, 2(8),
1-11.e709.

Lee, K. M., Coelho, M. A, Class, M. A, & Szumlinski, K. K. (2018).
mGlu5-dependent modulation of anxiety during early withdrawal from
binge-drinking in adult and adolescent male mice. Drug and Alcohol
Dependence, 184, 1-11.

Leech, S. L., Richardson, G. A., Goldschmidt, L., & Day, N. L. (1999). Prena-
tal substance exposure: Effects on attention and impulsivity of 6-year-
olds. Neurotoxicology and Teratology, 21(2), 109-118.

Liang, S. L., Alger, B. E., & McCarthy, M. M. (2014). Developmental
increase in hippocampal endocannabinoid mobilization: Role of meta-
botropic glutamate receptor subtype 5 and phospholipase C. Journal of
Neurophysiology, 112(10), 2605-2615.

Manduca, A, Bara, A, Larrieu, T. Lassalle, O. Joffre, C, Laye, S, &
Manzoni, O. J. (2017). Amplification of mGlu5-endocannabinoid signaling
rescues behavioral and synaptic deficits in a mouse model of adolescent
and adult dietary polyunsaturated fatty acid imbalance. The Journal of Neu-
roscience: The Official Journal of the Society for Neuroscience, 37(29),
6851-6868. https://doi.org/10.1523/JNEUROSCI.3516-16.2017

Manduca, A., Campolongo, P., & Trezza, V. (2012). Cannabinoid modula-
tion of mother-infant interaction: Is it just about milk? Reviews in the
Neurosciences, 23(5-6), 707-722.

Manduca, A., Lassalle, O., Sepers, M., Campolongo, P., Cuomo, V.,
Marsicano, G., ... Manzoni, O. J. (2016). Interacting cannabinoid and
opioid receptors in the nucleus accumbens core control adolescent
social play. Frontiers in Behavioral Neuroscience, 10, 211-217.

Manduca, A., Morena, M., Campolongo, P., Servadio, M., Palmery, M.,
Trabace, L., ... Trezza, V. (2015). Distinct roles of the endocannabinoids
anandamide and 2-arachidonoylglycerol in social behavior and emo-
tionality at different developmental ages in rats. European
Neuropsychopharmacology: The Journal of the European College of
Neuropsychopharmacology, 25(8), 1362-1374. https://doi.org/10.
1016/j.euroneuro.2015.04.005

Melancia, F., Schiavi, S., Servadio, M., Cartocci, V., Campolongo, P.,
Palmery, M., ... Trezza, V. (2018). Sex-specific autistic endophenotypes
induced by prenatal exposure to valproic acid involve anandamide sig-
nalling. British Journal of Pharmacology, 175(18), 3699-3712. https://
doi.org/10.1111/bph.14435

95UB917 SUOLWLLOD aA 1R 9dedl|dde ay) Aq peuseAob afe sopiLe VO ‘SN J0 S3|NJ 10} AleiqiTauljuQ 48]\ UO (SUONIPUOD-PpUe-SLLLIB)W0Y A3 | 1M Ale.q 1[pulUo//SAny) SUONIPUOD pue Wi 1 8u) 885 *[5202/60/ST] Uo Ariqiauliuo Ao|IM ‘6/87T Uda/TTTT OT/I0p/wod A3 | Areiqjputjuo sgndsda//sdny wouy pepeojumod ‘g ‘0202 ‘T8ES9LYT


https://doi.org/10.1016/j.ypmed.2018.08.036
https://doi.org/10.1007/s00702-009-0230-0
https://doi.org/10.1007/s00702-009-0230-0
https://doi.org/10.1016/j.nlm.2012.10.010
https://doi.org/10.1016/j.nlm.2012.10.010
https://doi.org/10.1093/nar/gkx1121
https://doi.org/10.1038/ncomms2045
https://doi.org/10.1038/ncomms2045
https://doi.org/10.1523/JNEUROSCI.3516-16.2017
https://doi.org/10.1016/j.euroneuro.2015.04.005
https://doi.org/10.1016/j.euroneuro.2015.04.005
https://doi.org/10.1111/bph.14435
https://doi.org/10.1111/bph.14435

MANDUCAET AL.

BRITISH
462 PHARMACOLOGICAL
SOCIETY

Mereu, G., Fa, M., Ferraro, L., Cagiano, R., Antonelli, T., Tattoli, M., ...
Cuomo, V. (2003). Prenatal exposure to a cannabinoid agonist pro-
duces memory deficits linked to dysfunction in hippocampal long-term
potentiation and glutamate release. Proceedings of the National Acad-
emy of Sciences of the United States of America, 100(8), 4915-4920.
https://doi.org/10.1073/pnas.0537849100

Navarro, M., Rubio, P., & de Fonseca, F. R. (1995). Behavioural conse-
quences of maternal exposure to natural cannabinoids in rats. Psycho-
pharmacology, 122(1), 1-14.

Passey, M. E., Sanson-Fisher, R. W., D'Este, C. A., & Stirling, J. M. (2014).
Tobacco, alcohol and cannabis use during pregnancy: Clustering of
risks. Drug and Alcohol Dependence, 134, 44-50.

Pellis, S. M., & Pellis, V. C. (2009). The playful brainedn. OneWorld Publica-
tions: Oxford UK.

Peterson, B. M., Mermelstein, P. G., & Meisel, R. L. (2015). Estradiol medi-
ates dendritic spine plasticity in the nucleus accumbens core through
activation of mGIuR5. Brain Structure & Function, 220(4), 2415-2422.

Richardson, K. A., Hester, A. K., & McLemore, G. L. (2016). Prenatal canna-
bis exposure—The “first hit” to the endocannabinoid system. Neu-
rotoxicology and Teratology, 58, 5-14.

Rodriguez de Fonseca, F. Cebeira, M. Fernandez-Ruiz, J. J,
Navarro, M., & Ramos, J. A. (1991). Effects of pre- and perinatal expo-
sure to hashish extracts on the ontogeny of brain dopaminergic neu-
rons. Neuroscience, 43(2-3), 713-723.

Rodriguez de Fonseca, F., Cebeira, M., Ramos, J. A, Martin, M., &
Fernandez-Ruiz, J. J. (1994). Cannabinoid receptors in rat brain areas:
Sexual differences, fluctuations during estrous cycle and changes after
gonadectomy and sex steroid replacement. Life Sciences, 54(3),
159-170.

Ryan, S. A, Ammerman, S. D., & O'Connor, M. E. (2018). Marijuana use
during pregnancy and breastfeeding: Implications for neonatal and
childhood outcomes. Pediatrics, 142(3), 1-15.

Saez, T. M., Aronne, M. P., Caltana, L., & Brusco, A. H. (2014). Prenatal
exposure to the CB1 and CB2 cannabinoid receptor agonist WIN
55,212-2 alters migration of early-born glutamatergic neurons and
GABAergic interneurons in the rat cerebral cortex. Journal of Neuro-
chemistry, 129(4), 637-648.

Scheyer A. (2019). Prenatal exposure to cannabis affects the developing
brain. In: The Scientist.

Schneider, M. (2013). Adolescence as a vulnerable period to alter rodent
behavior. Cell and Tissue Research, 354(1), 99-106.

Servadio, M., Manduca, A., Melancia, F., Leboffe, L., Schiavi, S.,
Campolongo, P., ... Trezza, V. (2018). Impaired repair of DNA damage
is associated with autistic-like traits in rats prenatally exposed to
valproic acid. European Neuropsychopharmacology: The Journal of the
European College of Neuropsychopharmacology, 28(1), 85-96. https://
doi.org/10.1016/j.euroneuro.2017.11.014

Sharapova, S. R., Phillips, E., Sirocco, K., Kaminski, J. W., Leeb, R. T., &
Rolle, 1. (2018). Effects of prenatal marijuana exposure on neuropsy-
chological outcomes in children aged 1-11 years: A systematic review.
Paediatric and Perinatal Epidemiology, 32(6), 512-532.

Silva, L., Zhao, N., Popp, S., & Dow-Edwards, D. (2012). Prenatal tetrahy-
drocannabinol (THC) alters cognitive function and amphetamine
response from weaning to adulthood in the rat. Neurotoxicology and
Teratology, 34(1), 63-71.

Smith, A. M., Fried, P. A,, Hogan, M. J., & Cameron, I. (2006). Effects of
prenatal marijuana on visuospatial working memory: An fMRI study in
young adults. Neurotoxicology and Teratology, 28(2), 286-295.

Solinas, M., Goldberg, S. R., & Piomelli, D. (2008). The endocannabinoid
system in brain reward processes. British Journal of Pharmacology, 154
(2), 369-383.

Spano, M. S., Ellgren, M., Wang, X., & Hurd, Y. L. (2007). Prenatal
cannabis exposure increases heroin seeking with allostatic changes in
limbic enkephalin systems in adulthood. Biological Psychiatry, 61(4),
554-563.

Spear, L. (2000). Modeling adolescent development and alcohol use in ani-
mals. Alcohol Research & Health: The Journal of the National Institute on
Alcohol Abuse and Alcoholism, 24(2), 115-123.

Substance Abuse and Mental Health Services Administration (2013).
National survey on drug use and health: summary of national findings.
Department of Health and Human Services. 2013. http://www.
samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML
2013/Web/NSDUHresults2013.htm#ch2

Terry, L. M., & Johanson, |. B. (1996). Effects of altered olfactory experi-
ences on the development of infant rats' responses to odors. Develop-
mental Psychobiology, 29(4), 353-377.

Tortoriello, G., Morris, C. V., Alpar, A., Fuzik, J., Shirran, S. L., Calvigioni, D.,
... Harkany, T. (2014). Miswiring the brain: A’-tetrahydrocannabinol
disrupts cortical development by inducing an SCG10/stathmin-2 deg-
radation pathway. The EMBO Journal, 33(7), 668-685. https://doi.org/
10.1002/embj.201386035

Trezza, V., Campolongo, P., Cassano, T., Macheda, T., Dipasquale, P.,
Carratu, M. R,, ... Cuomo, V. (2008). Effects of perinatal exposure to
A’-tetrahydrocannabinol on the emotional reactivity of the offspring:
A longitudinal behavioral study in Wistar rats. Psychopharmacology,
198(4), 529-537. https://doi.org/10.1007/s00213-008-1162-3

Trezza, V., Campolongo, P., Manduca, A., Morena, M., Palmery, M.,
Vanderschuren, L. J., & Cuomo, V. (2012). Altering endocannabinoid
neurotransmission at critical developmental ages: Impact on rodent
emotionality and cognitive performance. Frontiers in Behavioral Neuro-
science, 6, 2-12.

van Kerkhof, L. W. Damsteegt, R, Trezza, V. Voorn, P, &
Vanderschuren, L. J. (2013). Social play behavior in adolescent rats is
mediated by functional activity in medial prefrontal cortex and stria-
tum. Neuropsychopharmacology: Official Publication of the American Col-
lege of Neuropsychopharmacology, 38(10), 1899-1909.

Vanderschuren, L. J., Achterberg, E. J., & Trezza, V. (2016). The neurobiol-
ogy of social play and its rewarding value in rats. Neuroscience and Bio-
behavioral Reviews, 70, 86-105.

Vargish, G. A., Pelkey, K. A, Yuan, X., Chittajally, R., Collins, D., Fang, C., &
McBain, C. J. (2017). Persistent inhibitory circuit defects and disrupted
social behaviour following in utero exogenous cannabinoid exposure.
Molecular  Psychiatry, 22(1), 56-67. https://doi.org/10.1038/mp.
2016.17

Vela, G., Martin, S., Garcia-Gil, L., Crespo, J. A, Ruiz-Gayo, M., Fernandez-
Ruiz, J. J., .. Ambrosio, E. (1998). Maternal exposure to A°’-
tetrahydrocannabinol facilitates morphine self-administration behavior
and changes regional binding to central mu opioid receptors in adult
offspring female rats. Brain Research, 807(1-2), 101-109. https://doi.
org/10.1016/50006-8993(98)00766-5

Volkow, N. D., Compton, W. M., & Wargo, E. M. (2017). The risks of mari-
juana use during pregnancy. JAMA, 317(2), 129-130.

Wang, X., Dow-Edwards, D., Anderson, V., Minkoff, H., & Hurd, Y. L.
(2004). In utero marijuana exposure associated with abnormal amyg-
dala dopamine D2 gene expression in the human fetus. Biological Psy-
chiatry, 56(12), 909-915.

Wang, X., Dow-Edwards, D., Anderson, V., Minkoff, H., & Hurd, Y. L.
(2006). Discrete opioid gene expression impairment in the human fetal
brain associated with maternal marijuana use. The Pharmacogenomics
Journal, 6(4), 255-264.

Wiley, J. L., & Martin, B. R. (2002). Cannabinoid pharmacology: Implica-
tions for additional cannabinoid receptor subtypes. Chemistry and
Physics of Lipids, 121(1-2), 57-63.

Won, H., Lee, H. R, Gee, H. Y., Mah, W, Kim, J. ., Lee, J., ... Kim, E. (2012).
Autistic-like social behaviour in Shank2-mutant mice improved by
restoring NMDA receptor function. Nature, 486(7402), 261-265.
https://doi.org/10.1038/nature11208

Zanettini, C., Panlilio, L. V., Alicki, M., Goldberg, S. R., Haller, J., & Yasar, S.
(2011). Effects of endocannabinoid system modulation on cognitive
and emotional behavior. Frontiers in Behavioral Neuroscience, 5, 57.

95UB917 SUOLWLLOD aA 1R 9dedl|dde ay) Aq peuseAob afe sopiLe VO ‘SN J0 S3|NJ 10} AleiqiTauljuQ 48]\ UO (SUONIPUOD-PpUe-SLLLIB)W0Y A3 | 1M Ale.q 1[pulUo//SAny) SUONIPUOD pue Wi 1 8u) 885 *[5202/60/ST] Uo Ariqiauliuo Ao|IM ‘6/87T Uda/TTTT OT/I0p/wod A3 | Areiqjputjuo sgndsda//sdny wouy pepeojumod ‘g ‘0202 ‘T8ES9LYT


https://doi.org/10.1073/pnas.0537849100
https://doi.org/10.1016/j.euroneuro.2017.11.014
https://doi.org/10.1016/j.euroneuro.2017.11.014
http://www.samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML2013/Web/NSDUHresults2013.htm#ch2
http://www.samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML2013/Web/NSDUHresults2013.htm#ch2
http://www.samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML2013/Web/NSDUHresults2013.htm#ch2
https://doi.org/10.1002/embj.201386035
https://doi.org/10.1002/embj.201386035
https://doi.org/10.1007/s00213-008-1162-3
https://doi.org/10.1038/mp.2016.17
https://doi.org/10.1038/mp.2016.17
https://doi.org/10.1016/S0006-8993(98)00766-5
https://doi.org/10.1016/S0006-8993(98)00766-5
https://doi.org/10.1038/nature11208

MANDUCAET AL.

SUPPORTING INFORMATION
Additional supporting information may be found online in the

Supporting Information section at the end of this article.

BRITISH
B PHARMACOLOGICAL 463
SOCIETY

How to cite this article: Manduca A, Servadio M, Melancia F,
Schiavi S, Manzoni OJ, Trezza V. Sex-specific behavioural
deficits induced at early life by prenatal exposure to the
cannabinoid receptor agonist WIN55, 212-2 depend on
mGlu5 receptor signalling. Br J Pharmacol. 2020;177:449-463.
https://doi.org/10.1111/bph.14879

95UB917 SUOLWLLOD aA 1R 9dedl|dde ay) Aq peuseAob afe sopiLe VO ‘SN J0 S3|NJ 10} AleiqiTauljuQ 48]\ UO (SUONIPUOD-PpUe-SLLLIB)W0Y A3 | 1M Ale.q 1[pulUo//SAny) SUONIPUOD pue Wi 1 8u) 885 *[5202/60/ST] Uo Ariqiauliuo Ao|IM ‘6/87T Uda/TTTT OT/I0p/wod A3 | Areiqjputjuo sgndsda//sdny wouy pepeojumod ‘g ‘0202 ‘T8ES9LYT


https://doi.org/10.1111/bph.14879

	Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212...
	1  INTRODUCTION
	  What is already known
	  What this study adds
	  What is the clinical significance
	2  METHODS
	2.1  Animals
	2.2  Drug treatment

	3  BEHAVIOURAL TESTS
	3.1  Isolation-induced ultrasonic vocalizations
	3.2  Homing behaviour
	3.3  Social play behaviour
	3.4  Elevated plus-maze test
	3.5  Temporal order memory test
	3.6  Statistical analysis
	3.7  Nomenclature of targets and ligands

	4  RESULTS
	4.1  Reproduction data
	4.2  Prenatal exposure to the cannabinoid receptor agonist WIN caused sex-dependent deficits in social communication and lo...
	4.3  Prenatal exposure to the cannabinoid receptor agonist WIN had no effect on social play, anxiety-like behaviours and te...
	4.4  Prenatal exposure to the cannabinoid receptor agonist WIN did not induce deficits in social play, anxiety-like behavio...
	4.5  Positive allosteric modulation of mGlu5 receptors corrected the behavioural deficits induced by prenatal exposure to t...

	5  DISCUSSION
	  ACKNOWLEDGEMENTS
	  AUTHOR CONTRIBUTIONS
	  CONFLICT OF INTEREST
	  DECLARATION OF TRANSPARENCY AND SCIENTIFIC RIGOUR
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


