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Investigation of DNA damage,
oxidative stress, and inflammation
in synthetic cannabinoid users

EM Guler1,2 , MY Bektay3,4, AG Akyildiz5,6, BH Sisman7,
FV Izzettin3 and A Kocyigit1,2

Abstract
Background: The widespread use of synthetic cannabinoids (SCs) among youth has become an important public
health problem. Several life-threatening side effects of SC have been reported, including cardiovascular, gastrointest-
inal, neurological, renal, metabolic, ophthalmologic, and pulmonary effects, besides skin toxicity and hepatotoxicity.
Methods: Given that high levels of SC can lead to oxidative stress, DNA damage, and inflammation, it has been
aimed in this study to investigate the effects of SC in aspects of primary DNA damage, plasma total oxidant
status (TOS)/total antioxidant status (TAS), thiol–disulfide homeostasis, myeloperoxidase (MPO) level, and
cytokine levels (interleukin 1 beta (IL-1b), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-a)) of
40 SC users (SCUs) in Turkey.
Results: Mean plasma TOS levels were significantly higher in the SCUs group than in the healthy group (HG).
Similarly, mononuclear leukocyte DNA damage, plasma TOS, MPO activity, disulfide, oxidative stress index
levels, IL-1b, IL-6, and TNF-a levels were significantly higher in the SCU group than in the HG, whereas plasma
TAS, total, and native thiol levels were significantly lower in the SCU group than in the HG.
Conclusion: It is concluded that SC can cause increase in oxidative stress and in inflammatory processes in
addition to its potential for DNA damage. Additional studies with larger sample sizes and longer durations
should be held to understand more specific outcomes of SC use.
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Introduction

Since ancient years cannabis (marijuana) has been

widely used for its pharmacologic effects as in the

treatment of various diseases, or for its psychoactive

properties in recreational use, synthetic cannabinoids

(SCs), which were initially created for medicinal pur-

poses, eventually became a common drug of abuse

and the most widely used illegal drugs in the world.1

The widespread use of SC among youth has become

an important public health problem.2

SC is sold under various names such as “spice,”

“bonsai,” “K2,” “dream,” and “JWH-018.” Several

life-threatening side effects of SC have been reported

including cardiovascular effects, gastrointestinal,

neurological, renal, metabolic, ophthalmologic, pul-

monary, skin toxicity, and hepatotoxicity.3–5

Obtained from the plant Cannabis sativa or

Cannabis indica, there are more than 500 chemical

compounds and 100 cannabinoids, also named
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phytocannabinoids.6,7 Due to their herbal aspect, SC

is misused as “natural products.”4 The most effective

compounds in SC are tetrahydrocannabinol (THC),

cannabidiol, cannabinol, cannabigerol, tetrahydrocan-

nabivarin, cannabichromene, tetrahydrocannabivarin

acid, delta-8 THC, and cannabidivarin.8,9

There are a few studies focusing on the toxicity of

cannabinoids describing cellular alterations caused by

THC.10 Given that high levels of SCs can lead to

oxidative stress,11,12 genotoxicity,13,14 and inflamma-

tion,15 the effects of the molecule at the blood con-

centrations of bonsai users in Turkey have been

investigated in the aspects of total oxidant status

(TOS)/total antioxidant status (TAS), thiol–disulfide

homeostasis, myeloperoxidase (MPO) level, primary

DNA damage (comet assay), and cytokine levels.

Studies are showing that an important underlying

cause of cannabinoid toxicity can be oxidative stress,

and this can be attributed to the effect of THC, which

may induce oxidative stress (in vitro and in

vivo).11,12,16

Oxidative stress emerges when the prooxidant–

antioxidant balance gets disturbed due to the accumu-

lation of reactive oxygen species (ROS). Minor

changes in the redox balance are compensated with

immediate cellular environmental adaptations, which

are explained with the concept that ROS at homeo-

static level plays a central role in cellular processes.17

On the other hand, severe accumulation of ROS

due to disruption in the redox balance can cause

severe deficiencies by interrupting the regular func-

tions of the cell irreparably, thus, affecting the system

by the whole.18 For example, stroke is an important

toxic effect among cannabinoid users, which is stated

in several studies,19–21 and the generation of ROS is

one of the known mechanisms of stroke in human.22 It

is also emphasized that the pathological effects of

ROS accumulation such as diabetes,23 liver necro-

sis,24 and cancer25 are mechanistically due to oxi-

dized macromolecules, which can be sorted as lipid

peroxidation, protein modifications, and DNA

oxidation.

The antioxidant defense system consists of two

major groups: antioxidant enzymes such as SOD,

CAT, GR, and GPx and the nonenzyme antioxidant

molecules such as GSH, vitamin E, and vitamin

C.26,27

The thiol–disulfide homeostasis takes place in crit-

ical cellular functions such as antioxidant protection,

apoptosis, detoxification, and cellular signaling.28 It

has been seen that abnormal thiol–disulfide

homeostasis can be involved in the underlying

mechanisms of many disorders.29–31 Considering that

the determination of thiol–disulfide homeostasis pro-

vides useful information about critical biochemical

processes, it has been measured in the present study.

In the present study, genotoxicity was examined

by the comet assay, which indicates DNA damage in

single cells, which is based on the migration of DNA

using electrophoresis cells.32,33 According to the

findings of recent investigations, the toxic effects

of drugs may be due to the DNA-damaging proper-

ties.13,14 Koller et al. report that damage of the

genetic material can be an important cause of SC-

induced toxicity.14,34,35

Along with genotoxicity and oxidative stress13

induction of inflammation can play a significant role

in the occurrence of various diseases including can-

cer.36–38 Therefore, in the present study, the cytokine

blood levels of the drug users were measured to see

the effects of SC on inflammatory reactions.

Materials and method

The study was conducted in accordance with the

Basic & Clinical Pharmacology & Toxicology Policy

for experimental and clinical studies.39 The study was

planned as an observational, case–-control study to

investigate the roles of DNA damage, systemic oxi-

dative stress, thiol–disulfide homeostasis, and inflam-

mation in SC addicts. Ethical approval for the study

was obtained and was conducted with the principles

of the Declaration of Helsinki. Written informed con-

sent was obtained from each participant.

From February 2019 to August 2019, this prospec-

tive case–control study included 40 adult users (sex:

40 male; age: 18–45) who were diagnosed with SC

addiction in the University of Health Sciences Fatih

Sultan Mehmet Education and Research Hospital. All

selected users were untreated individuals without

using any other drugs but SC at least 2 years. For the

healthy control group, 40 participants (sex: male; age:

18–45) were included in the study group with age and

sex matching with the user group. This study has been

approved by Bezmialem Vakif University Ethics

Committee with the decision number 16/17.

Blood sample collection

After confirmation, blood samples were taken from

the antecubital vein of each user, collected into hepar-

inized tubes. Blood tubes were transferred to the bio-

chemistry laboratory and were analyzed without
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delay. For peripheral mononuclear leukocyte separa-

tion, 1-mL heparinized blood was layered over 1-mL

Histopaque 1077 (Sigma-Aldrich, St. Louis, Mis-

souri, USA) and centrifuged for 25 min at 700 � g

and 25�C. The interface band containing mononuclear

leukocytes was washed with phosphate-buffered sal-

ine (PBS) and then collected by 15-min centrifugation

at 500 � g. The resulting pellets were resuspended in

PBS. Membrane integrity was assessed by Trypan

Blue exclusion method. The remaining blood samples

were centrifuged at 3000 � g for 10 min in order to

collect the plasma. The separated plasma was frozen

immediately at –80�C until further analysis of plasma

interleukin 1 beta (IL-1b), interleukin 6 (IL-6) and

tumor necrosis factor-alpha (TNF-a), MPO, total

thiol (TT) and native thiol (NT) and TOS and TAS

were measured. Oxidative stress index (OSI) and

thiol–disulfide level were calculated by a mathemat-

ical equation.

Mononuclear leukocyte isolation for DNA
damage analyses

The comet assay was conducted as described by Singh

et al.32 with slight modifications: 10 mL of fresh

mononuclear leukocyte (MNL) cell suspension (about

20,000 cells) was mixed with 80 mL of 0.65% low

melting point agarose in PBS at 37�C. Afterward,

80 mL of the mixture was plated onto a 1% normal

melting point agarose-coated-slide and covered with a

coverslip. The slides were kept at 4�C for 5 min to

solidify the agarose. After the gel became solid, the

slides were incubated with fresh cold (4�C) lysis buf-

fer (2.5 M sodium chloride, 100 mM Na2Ethylenedia-

minetetraacetic (EDTA), 10 mM Tris-HCl, pH ¼ 10–

10.5) for at least 1 h: 1% Triton X-100 and 10%
dimethyl sulfoxide (DMSO) were added just ahead

of using the buffer. After that, the slides were

immersed at 4�C in a freshly made alkaline buffer

(0.3 mol/L sodium hydroxide and 1 mmol/L

Na2EDTA, pH ¼ 13) in the electrophoresis tank.

After a 20-min DNA unwinding period, the electro-

phoresis was performed at 4�C for 30 min at 0.7 V/cm

and 300 mA.

After the electrophoresis process, the slides were

washed at 4�C for 5 min with neutralization buffer

(0.4 M Tris, pH ¼ 7.5) and dehydrated with ethanol.

The slides were stained with ethidium bromide

(2 mg/mL in distilled H2O; 70 mL/slide) covered with

a coverslip and analyzed with a fluorescence micro-

scope (Leica DM 1000, Solms, Germany) with a

rhodamine filter (an excitation wavelength of 546

nm and a barrier of 580 nm). All experiments were

done under minimal light. A computerized image

analysis system (Comet Assay IV; Perceptive Instru-

ments, Bury St Edmunds, UK) was used for the eva-

luation of the degree of DNA damage levels. As the

primary criterion for DNA damage, the percentage of

DNA in the tail intensity (tail intensity %) was used.40

All steps were performed three times.

Determination of TOS

Plasma TOS was measured with a novel automated

analyzing method developed by Erel.41 Oxidants oxi-

dize the ferrous ions of o-dianisidine compounds to

ferric ions. The oxidation leads to the formation of

ferric ions that are seen as colorful compounds in

acidic environments using xylenol orange; the density

of the color is proportional to the oxidant level. In this

study, hydrogen peroxide (H2O2) was used for cali-

bration of the assay. The results are expressed as

micromoles of H2O2 equivalent per liter.

Determination of TAS

Plasma TAS was measured with an automated colori-

metric assay42 based on the quantitative measurement

of OH radicals. The (Feþ2þ o-dianisidine) compound

leads to Fenton-type reactions with H2O2 to form OH

radicals which react with the o-dianisidine molecules

creating yellow-brown dianisidine radicals. Antioxi-

dants stop the color formation by inhibiting oxidant

reactions. The experiments were performed by spec-

trophotometry at 240 nm with an automated analyzer

(Thermo Scientific Varioskan Flash Multimode

Reader, Waltham, Massachusetts, USA). Trolox, a

water-soluble analog of vitamin E, was used as the

calibrator. This assay shows the antioxidative capa-

bility of the sample against potent free radical reac-

tions triggered by the OH radical. The results are

given as millimoles of Trolox equivalent per liter

millimole.

OSI

OSI is an indicative rate of oxidative stress. It is

showed as a percentage of the ratio of plasma TOS

to TAS which is calculated with the following

formula

OSI ðarbitrary unitÞ ¼ TOS; mmol H2O2eq=Lð Þ
= TAS; mmol Trolox eq=Lð Þ
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Activity of MPO

Plasma MPO activity, which is one of the main oxi-

dative enzymes, was determined by the method of

Bradley et al.43 Based on the kinetic measurement

of the formation rate of the yellowish-orange product

of the oxidation of o-dianisidine with MPO in the

presence of H2O2, at 460 nm, the MPO activity was

given as units per liter of plasma.

Determination of thiol/disulfide homeostasis

Plasma TDH was measured by a method previously

explained.42 An automated clinical chemistry analy-

zer (Thermo Varioskan Multireader) was used in this

study. Disulfide bonds are reduced to free functional

thiol groups with sodium borohydride. Unused reduc-

tant sodium borohydride was used and removed with

formaldehyde to avoid the reduction of 5,50-dithiobis-

(2-nitrobenzoic) acid. The thiol groups (reduced and

NT) were detected after the reaction with 5,50-dithio-

bis-(2-nitrobenzoic) acid. Fifty percent of the differ-

ence between the TTs and NTs provides the dynamic

disulfide quantity. After the determination of –SH and

–SHþ–S–S–, –S–S– and –S–S–/–SH %, –S–S/–SHþ–

S–S%, and –SH/–SHþ–S–S–% were calculated.

Cytokine levels

Plasma IL-1b, IL-6, and TNF-a levels were measured

with an enzyme-linked immunosorbent assay kits for

human, according to protocols provided by manufac-

turers (Elabscience, Houston, Texas, USA). All anal-

yses were done with a microplate reader (Varioskan

Flash; Thermo), and the results were recorded.

Statistical analysis

All data analyses were conducted using IBM SPSS

version 22.0 software (IBM Corporation, Armonk,

New York, USA). The numerical data were

expressed as mean + standard deviation, whereas

categorical variables were expressed as numbers of

users (n). Intergroup comparisons (controls vs.

users) were made using �2 and Mann–Whitney

U tests as appropriate. Student’s t-test was used to

compare parametric variables between the user and

control groups. Bivariate correlation analyses were

done by Spearman’s test.

Results

Among the 40 drug users included in our research, the

mean age was 31.23 + 5.82 years (age range: 18–42

years), and all subjects are males. Among the 40

healthy volunteers, the mean age was 31.18 + 5.82

years (age range: 19–45 years), and all volunteers are

males. There was no significant difference between the

synthetic cannabinoid users (SCUs) and healthy groups

(HGs) in terms of age (p ¼ 0.973). Mean plasma TOS

levels were significantly higher in the SCU group than

in the HG. Similarly, lymphocyte DNA damage

(Figure 1); plasma TOS, MPO activity, disulfide, and

OSI levels; and IL-1b, IL-6, and TNF-a levels were

significantly higher in the SCU group than in the HG,

whereas plasma TAS, total, and NT levels were signif-

icantly lower in the SCU group than in the HG.

Table 1 presents the comparisons of the SCU and

HG in terms of lymphocyte DNA damage, plasma

oxidative stress parameters (TAS, TOS, OSI), thiol–

disulfide homeostasis parameters (TT and NT, disul-

fide), and inflammatory cytokines levels (IL-1b, IL-6,

and TNF-a).

Figure 1. DNA damage (SCU no: 1 and healthy control no: 1). SCU: synthetic cannabinoid user.

Guler et al. 1457



DNA damage was positively correlated with TOS (r¼
0.734, p¼ 0.001), OSI (r¼ 0.834, p¼ 0.001), MPO (r¼
0.828, p¼ 0.001), disulfide (r¼ 0.381, p¼ 0.001), IL-1b
(r¼ 0.765, p¼ 0.001), IL-6 (r¼ 0.899, p¼ 0.001), and

TNF-a (r¼ 0.878, p¼ 0.001) and negatively correlated

with TAS (r¼�0.819, p¼ 0.001), TT (r¼�0.760, p¼
0.001), and NT (r¼ �0.845, p¼ 0.001).

There was a strong positive correlation between

addict duration and OSI (r ¼ 0.887, p < 0.001) and

between addict duration and TOS (r ¼ 0.530, p <

0.001). There was a just negative correlation

between addict duration and TAS (r ¼ �0.672,

p < 0.001). There was no significant correlation

between the duration of addiction inflammation

and DNA damage.

Discussion

As an important problem, SCs addiction becomes more

prominent nowadays. A detailed literature survey

showed us that there is not enough study on human

subjects evaluating oxidative stress and the inflamma-

tory effect of SC with different oxidative parameters,

and enzyme profiles are inadequately examined. Espe-

cially, MPO and thiol/disulfide levels in human subjects

have not been investigated by any researcher. However,

there are many studies investigating oxidative para-

meters of SC on cell lines and in vivo.34,44–46 Research-

ers investigating the in vitro effects of SC have one

opinion in common which is that cell viability reduces

upon administration of SC on various cell lines.

Jacobsson et al. have suggested that activation of

vallinoid and cannabinoid receptors has been

associated with SC exposure leading to cellular toxi-

city.47 Increased serum levels of ROS has been seen

in users who are addicted to SC. Comparison of the

measured TOS levels with the control group showed a

statistical difference in the present study. Similar to

our study, Bayazit et al. found that cannabis addicts

had higher TOS and OSI levels compared to control

but they found no difference in TAS.48

Oxidative stress emerges when the prooxidant–

antioxidant balance gets disturbed due to the accumu-

lation of ROS. Thiol–disulfide homeostasis is a novel

biomarker for oxidative stress.31 Existing oxidative

stress and inflammation causes a shift toward disul-

fide formation and, at the same time, NT and TT

levels increase as a response.49 NT and TT are able

to increase the antioxidant capacity. To the best of our

knowledge, there were no studies in the literature

which are investigating the effects of SC usage on

thiol–disulfide homeostasis. According to our finding,

a statistical significance was seen between the groups.

In our result, we detected increased ROS levels in

serum of SCUs. Another research group showed an

in vitro study that inflammation and oxidative stress

are key mediators of neurotoxicity caused by SC.50

Mitochondria are undeniably important sources of

ROS. When there is excessive leakage of free radicals

from mitochondria, the consequences can be seen in

mitochondrial functions. Wolff et al.12 demonstrated

in vivo that THC impairs the mitochondrial respira-

tory chain and causes uncoupling which ultimately

increases the production of free radicals.

The human body has different proteins and

enzymes to cope with oxidative stress. Homeostasis

Table 1. DNA damage, oxidative stress, and inflammation parameters of 40 SCUs and 40 healthy controls.a

HG (n ¼ 40) SCU (n ¼ 40) p Value

DNA damage (% tail) 4.81 + 3.22 66.39 + 15.48 <0.001
TOS (mmol H2O2 eq. / L) 9.93 + 1.69 14.36 + 1.70 <0.001
TAS (mmol Trolox eq. /L) 1.23 + 0.18 0.71 + 0.09 <0.001
OSI (arbitrary unit) 8.19 + 1.71 20.99 + 2.87 <0.001
MPO (U/L) 25.94 + 3.94 44.94 + 5.08 <0.001
TT (mmoL/L) 506.50 + 44.61 401.52 + 20.68 <0.001
NT (mmoL/L) 431.87 + 38.95 280.29 + 31.05 <0.001
Disulfide (mmoL/L) 37.31 + 2.19 60.61 + 2.48 <0.001
IL1b (pg/L) 88.69 + 19.00 235.75 + 59.06 <0.001
IL6 (ng/L) 54.35 + 9.49 169.79 + 26.31 <0.001
TNFa (ng/L) 65.60 + 8.76 160.11 + 24.28 <0.001

HG: healthy group; SCU: synthetic cannabinoid user; TOS: total oxidant status; TAS: total antioxidant status; OSI: oxidative stress
index; MPO: myeloperoxidase; IL-1b: interleukin 1 beta; IL-6: interleukin 6; TNF-a: tumor necrosis factor-alpha; TT: total thiol; NT:
native thiol; SD: standard deviation.
aData are presented as mean + SD and number of volunteers.
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is achieved via different pathways in biological sys-

tems. As a quick response to oxidative stress, MPO

levels increase. MPO is one of the important inflam-

matory and oxidative enzymes which has antimicro-

bial properties using H2O2 to produce hypochlorous

acid.51 In our work, a statistical significance has

been achieved in the MPO enzyme levels which is

present in serum indicating inflammation and oxida-

tive stress. On the other hand, there is also a study

indicating that cannabidiol inhibited MPO activity in

neutrophils suggesting cannabidiol as a potential

neuroprotective and anti-inflammatory agent.52

Nonetheless, this result might seem controversial to

our results but this may be due to their experimental

model which was conducted in mice and the expo-

sure time was rather shorter, whereas our study is

investigating the outcome of chronic exposure in

human. On the other hand, the amount of the sub-

stance and difference of the constituents may also be

related with the opposite outcomes.

The prooxidative/antioxidative properties of SC is

a controversial topic. There are studies determining

antioxidant effects of SC. Most of these effects are

seen by small doses administered and differ by the

treatment duration (chronic exposure most probably

leads to oxidative stress, as we found in our study).

But yet, it has been stated by Archie and Cucullo53

that oxidative stress emerged from smoking SC can be

due to the combustion rather than the SC itself.

Koller et al.34 stated in their work that some of the

most common molecules of SC has genotoxic prop-

erties. In their study, genotoxic effects of SC on lym-

phocytes were investigated with the comet assay.

Similar to their study, we examined genotoxicity with

the comet assay and a statistical significance has been

found between HG and SCU. Bileck et al. also tested

the impact of SC and found micronuclei formation

which indicates chromosomal aberrations and comet

formation. They also gave a reasonable explanation

which is that a downregulation in the protein expres-

sion of DNA repair proteins in human lymphocytes

may be the cause of the detected DNA damage.15

The same group reported in their study that pro-

and anti-inflammatory cytokines expression has been

raised with SC application. In their study, IL-1b has

showed an upregulation. On the other hand, a signif-

icant increase in IL-6 levels was observed by some

other scientists.54–56 Inflammatory cytokines were

found increased in cell lines and animal models; how-

ever, endocannabinoids application did not increase

cytotoxicity.57,58 Contrary to this finding, exogenous

cannabinoids triggered the anti-inflammatory cyto-

kine levels as well as the immune cells such as T and

B cells.56 However, the exact mechanism which ini-

tiated this increase of cytokine levels is not known.

Our results of IL-1b and IL-6 levels were consistent

with the literature. A significance has been acquired

in the case of IL-6 levels of HG and SCU. TNF-a is

another important inflammatory cytokine found ele-

vated after cannabinoid usage in the literature.56

There was also a statistical significance between the

groups HG and SCU. As our results and literature

correlated, SC usage has inflammatory effects on

human cells leading to inflammation; thus, a harmful

cascade could be initiated.

However, our study has some limitations as well,

such as low number of participants, lack of the exact

structural knowledge of the SC (JWH, AM, WIN, and

CP derivatives) used as well as the SC serum levels.

Conclusions

The results obtained from this study pointed out that

SC causes both increase in oxidative stress and

inflammatory processes. SC usage is a priori cause

to genotoxicity. Either short-term (other than thera-

peutic purposes) or long-term exposure is likely to be

harmful to the human body, and the negative out-

comes of substance abuse adversely affect the society

as a whole. Programs or initiatives to quit these highly

addictive substances should be supported by each

individual and institution. Additional studies with

larger sample sizes and longer durations should be

held to understand more specific effects of SC use.

We hope this study will put light upon the path of

other studies and scientists.
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9. Papaseit E, Pérez-Mañá C, Pérez-Acevedo AP, et al.

Cannabinoids: from pot to lab. Int J Med Sci 2018; 15:

1286–1295.

10. Wang J, Yuan W and Li MD. Genes and pathways

co-associated with the exposure to multiple drugs of

abuse, including alcohol, amphetamine/methampheta-

mine, cocaine, marijuana, morphine, and/or nicotine: a

review of proteomics analyses. Mol Neurobiol 2011;

44: 269–286.

11. Parolini M and Binelli A. Oxidative and genetic

responses induced by D-9-tetrahydrocannabinol

(D-9-THC) to Dreissena polymorpha. Sci Total

Environ 2014; 468–469: 68–76.

12. Wolff V, Schlagowski A-I, Rouyer O, et al. Tetrahy-

drocannabinol induces brain mitochondrial respiratory

chain dysfunction and increases oxidative stress: a

potential mechanism involved in cannabis-related

stroke. BioMed Res Int 2015; 2015: 323706.

13. Ferk F, Gminski R, Al-Serori H, et al. Genotoxic prop-

erties of XLR-11, a widely consumed synthetic canna-

binoid, and of the benzoyl indole RCS-4. Arch Toxicol

2016; 90: 3111–3123.

14. Koller VJ, Ferk F, Al-Serori H, et al. Genotoxic prop-

erties of representatives of alkylindazoles and

aminoalkyl-indoles which are consumed as synthetic

cannabinoids. Food Chem Toxicol 2015; 80: 130–136.

15. Bileck A, Ferk F, Al-Serori H, et al. Impact of a syn-

thetic cannabinoid (CP-47,497-C8) on protein expres-

sion in human cells: evidence for induction of

inflammation and DNA damage. Arch Toxicol 2016;

90: 1369–1382.

16. Juknat A, Pietr M, Kozela E, et al. Microarray and

pathway analysis reveal distinct mechanisms underly-

ing cannabinoid-mediated modulation of LPS-induced

activation of BV-2 microglial cells. PloS One 2013; 8:

e61462.

17. Burton GJ and Jauniaux E. Oxidative stress. Best Pract

Res Clin Obstet Gynaecol 2011; 25: 287–299.

18. Halliwell B and Gutteridge E. Free radicals in biology

& medicine, 5th ed. USA: Oxford University Press,

2015.

19. Wolff V and Jouanjus E. Strokes are possible compli-

cations of cannabinoids use. Epilepsy Behav 2017; 70:

355–363.

20. Hirapara K and Aggarwal R. Synthetic cannabis use

and stroke: a rising risk? Int J Stroke 2016; 11:

NP78–NP78.

21. Singh A, Saluja S, Kumar A, et al. Cardiovascular

complications of marijuana and related substances: a

review. Cardiol Ther 2018; 7(1): 45–59.

22. Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in

ischemic brain damage: mechanisms of cell death and

potential molecular targets for neuroprotection. Anti-

oxid Redox Signal 2011; 14: 1505–1517.

23. Coskun ZM and Bolkent S. Evaluation of D9-tetrahy-

drocannabinol metabolites and oxidative stress in type

1460 Human and Experimental Toxicology 39(11)

https://orcid.org/0000-0003-4351-1719
https://orcid.org/0000-0003-4351-1719
https://orcid.org/0000-0003-4351-1719
https://www.unodc.org/wdr2018
http://www.europeanreview.org/wp/wp-content/uploads/1-6-Hepatotoxicity-associated-to-synthetic-cannabinoids-use.pdf
http://www.europeanreview.org/wp/wp-content/uploads/1-6-Hepatotoxicity-associated-to-synthetic-cannabinoids-use.pdf
http://www.europeanreview.org/wp/wp-content/uploads/1-6-Hepatotoxicity-associated-to-synthetic-cannabinoids-use.pdf
http://www.adicciones.es/index.php/adicciones/article/viewFile/858/863
http://www.adicciones.es/index.php/adicciones/article/viewFile/858/863
http://www.adicciones.es/index.php/adicciones/article/viewFile/858/863


2 diabetic rats, https://www.ncbi.nlm.nih.gov/pmc/arti

cles/PMC4818362/pdf/IJBMS-19-154.pdf (2016,

accessed 21 November 2018).

24. Kaplowitz N. Mechanisms of liver cell injury. J Hepa-

tol 2000; 32: 3947.

25. Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative

stress, inflammation, and cancer: How are they linked?

Free Radic Biol Med 2010; 49(11): 1603–1616.

26. Couto N, Wood J and Barber J. The role of glutathione

reductase and related enzymes on cellular redox homo-

eostasis network. Free Radic Biol Med 2016; 95: 27–42.
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