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Original article

Cannabinoids and the endocannabinoid
system in reward processing and addiction:

from mechanisms to interventions
Rainer Spanagel, PhD

The last decades have seen a major gain in understanding the action of cannabinoids and the endocannabinoid system
in reward processing and the development of addictive behavior. Cannabis-derived psychoactive compounds such as
A’-tetrahydrocannabinol and synthetic cannabinoids directly interact with the reward system and thereby have addictive
properties. Cannabinoids induce their reinforcing properties by an increase in tonic dopamine levels through a cannabinoid
type 1 (CB,) receptor-dependent mechanism within the ventral tegmental area. Cues that are conditioned to cannabis
smoking can induce drug-seeking responses (ie, craving) by eliciting phasic dopamine events. A dopamine-independent
mechanism involved in drug-seeking responses involves an endocannabinoid/glutamate interaction within the corticostriatal
part of the reward system. In conclusion, pharmacological blockade of endocannabinoid signaling should lead to a reduction
in drug craving and subsequently should reduce relapse behavior in addicted individuals. Indeed, there is increasing
preclinical evidence that targeting the endocannabinoid system reduces craving and relapse, and allosteric modulators at
CB, receptors and fatty acid amide hydrolase inhibitors are in clinical development for cannabis use disorder. Cannabidiol,
which mainly acts on CB, and CB, receptors, is currently being tested in patients with alcohol use disorder and opioid
use disorder.

© 2020, AICH - Servier Group Dialogues Clin Neurosci. 2020;22(3):241-250. doi: 10.31887/DCNS.2020.22.3/rspanagel

Keywords: addiction; alcohol; cannabinoid; CB /CB,-receptor blockade; cocaine; craving; drug reward; endocannabi-
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Introduction

The endocannabinoid system is comprised of cannabinoid
CB, and CB, receptors and endogenous agonists of these
receptors—so-called endocannabinoids—and the processes
playing a role in biosynthesis, release, transport, and metab-
olism of these endogenous lipid-signaling molecules.
Endocannabinoids such as anandamide and 2-arachidonyl-
glycerol (2-AG) are highly lipophilic compounds that are
not stored in vesicles after production. After their release
on demand from depolarized postsynaptic neurons, endo-
cannabinoids act retrogradely, activating CB, receptors on

presynaptic terminals, leading to either transient endocanna-
binoid-mediated short-term depression or long-term depres-
sion (LTD) of synaptic transmission.! Their overall effect
is either excitatory or inhibitory depending on the presyn-
aptic inhibition of GABA or glutamatergic transmission.
This powerful modulatory action on synaptic transmission
of the main transmitter systems has significant functional
implications on many physiological functions including
reward processing. The last decades have seen a major gain
in understanding the involvement of the endocannabinoid
system in reward processing and development of addictive
behavior.?
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The endocannabinoid system with its two cannabinoid
receptors is also a target for psychoactive compounds
such as A’-tetrahydrocannabinol (A’-THC) derived from
Cannabis sativa or for synthetic cannabinoids. More than
182 million people regularly consume cannabis products,
and this nonmedical cannabis use is associated with a high
health burden.? Although only a small proportion of indi-
viduals who use cannabis products develop cannabis use
disorder (CUD), the treatment of those patients is becoming
an increasing problem in psychiatry
and addiction medicine. Epidemi-
ological studies have found that of
those people who regularly consume
cannabis, approximately 9% develop
a CUD; in comparison, approx-
imately 20% of those who drink
alcohol or use cocaine on a regular
base develop an alcohol use disorder
(AUD) or cocaine addiction.*?
In contrast to the negative conse-
quences of nonmedical cannabis use,
the application of medical cannabis
or medicinal products derived from
cannabis is generating increasing interest in the domain of
treatment for psychiatric disorders (posttraumatic stress
disorder [PTSD] and attention-deficit’hyperactivity disorder
[ADHD] in adults), including substance use disorders
(SUDs).In addition, synthetic compounds (eg, antagonists
and allosteric modulators) that interfere with the endocan-
nabinoid system in many ways are also promising for the
treatment of SUDs and AUDs.

Here, I will summarize our knowledge of the interaction of
the endocannabinoid system with the reward system, then
focus on the addictive properties of cannabis products and
synthetic cannabinoids and the development of CUD, and
finally discuss the potential use of cannabinoid drugs for the
treatment of addictive behavior.

The interaction of endocannabinoid signaling
and the reward system

Endocannabinoids activate CB, and/or CB, receptors to
modulate a variety of physiological functions. The distri-
bution of these receptors within the central nervous system
and periphery correlates with its role in the control of motor
function, cognition and memory, appetite, immune func-

One myth about
cannabis is that this is a
safe drug; high-potency

cannabis varieties
and new synthetic
ultra-potent cannabinoids
[...] tell another story

tion, sleep, stress response, thermoregulation, analgesia, and
reward processing.’

The CB, receptor, which is one of the most abundant G-pro-
tein-coupled receptors (GPCRs) in the brain, is highly
expressed in the basal ganglia nuclei, hippocampus, cortex,
and cerebellum.® CB, receptors are primarily localized on
the terminals of neurons, where they mediate inhibition of
neurotransmitter release.” CB, receptors are found at signifi-
cantly higher levels on GABAergic
than glutamatergic neurons in
various brain regions.'* CB, receptors
are also present on astrocytes, where
they are expressed at much lower
levels than on neurons, but where
they have been shown to modulate
synaptic transmission and plasticity."

The CB, receptor is abundantly
expressed in peripheral organs with
immune function, including macro-
phages, spleen, tonsils, thymus, and
leukocytes, as well as the lung and
testes.'” However, functional CB, receptors have been also
found in healthy and diseased brain cells and seem to be
involved in several neuropsychiatric disorders, including
addiction."

The crystal structures of the cannabinoid receptors have
recently been revealed, providing further insight into
complex ligand-receptor interactions.'"!” For example,
the CB, receptor has considerable agonist-independent
constitutive activity and exhibits paradoxical pharmaco-
logical interactions'®; eg, the CB, receptor is antagonized
by cannabidiol (CBD), a molecule that is nearly identical
to the CB, receptor agonist A>-THC." The new atomistic
framework helps understanding of the constitutive activity
of these receptors and also provides a molecular basis for
predicting the binding modes and actions of A>-THC, CBD,
and other endogenous and synthetic cannabinoids.

Although CB, and CB, receptors are the primary targets
of cannabinoids, it is generally accepted that at least some
endocannabinoids, as well as A>-THC and several synthetic
CB,/CB,-receptor agonists and antagonists, can interact with
a number of established non-CB / non-CB, GPCRs, ligand-
gated ion channels, ion channels, and nuclear receptors."’
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One prominent example of a noncannabinoid receptor target
is the transient receptor potential cation channel subfamily
V member 1 (TRPV1), also known as the capsaicin receptor
and the vanilloid receptor 1, which can be modulated by
several endogenous, phytogenic, and synthetic cannabi-
noids.?

The endocannabinoid system participates in natural and
drug reward through interaction with the dopaminergic
reward system. The reward pathway originates in the
ventral tegmental area (VTA) and A10 dopamine neurons
mainly project to the nucleus accumbens (NAc) where
dopamine is released in response to rewards. All drugs of
abuse, including A’-THC and other cannabinoids, as well
as natural (eg, food and sex) and social rewards, increase
dopamine levels within the NAc.*** Dopamine neurons
have two modes of activity, tonic and phasic firing.* Tonic
activity consists of pacemaker-like spontaneous single
spikes (1-5 Hz), whereas phasic activity is characterized by
rapid transient increases in dopamine levels that result from
high-frequency bursts (>20 Hz).” Phasic activity of dopa-
mine neurons is necessary to establish long-term memo-
ries associating predictive stimuli with rewards, whereas
tonic activity of these neurons determines the motivation
to respond to such cues.*

Cannabinoids increase both tonic dopamine levels by an
increase in the firing rate of dopamine A10 neurons®~¢ as
well as phasic dopamine events through a CB -receptor—
dependent mechanism within the VTA.??®* However,
dopamine cell bodies lack CB, receptors,* so where do
cannabinoids act within the VTA to enhance dopaminergic
activity? Peters et al*®** propose the following disinhibition
mechanism: similar to a mechanism described for opioids,*
cannabinoids act via GABAergic interneurons within the
VTA to disinhibit dopamine neurons.

Drug-conditioned cues, eg, cues that are conditioned to
cannabis smoking, increase phasic dopamine events through
a CB,-receptor-dependent mechanism within the VTA >"2%>!
The phasic dopamine events that are induced by conditioned
drug cues play a critical role in drug-seeking behavior, and
disrupting endocannabinoid signaling decreases cue-evoked
phasic dopamine events.”” If a drug-conditioned cue leads to
dopamine neuron firing in high-frequency bursts, increased
intracellular calcium levels within dopamine cell bodies
activate, primarily, diacylglycerol lipase (DAGL), which

leads to the synthesis of the endocannabinoid 2-AG.*? 2-AG
then acts retrogradely on CB, receptors at presynaptic termi-
nals of GABA neurons. Therefore, CB -receptor activation
leads to an inhibition of GABA transmission. This GABA
suppression results in disinhibition of dopamine neurons,
which further promotes their phasic firing activity (Figure
1). Disrupting endocannabinoid signaling within the VTA
thus reduces these cue-evoked phasic dopamine responses
and therefore interrupts reward-seeking behavior. This
mechanism applies to all cue-reward/drug associations and
thus provides the foundation for a mechanism-based inter-
vention of drug-seeking responses (ie, craving).

Endocannabinoids not only act on the level of dopamine
cell bodies within the VTA to interfere with primary and
secondary reinforcement processes, but also on projection
sites within the NAc. This interaction involves medium
spiny neurons (MSNs) and prefrontal glutamate afferents,
especially glutamate release at the prelimbic cortex—NAc
synapses.*®* Stimulation of these prefrontal glutamate
afferents can cause LTD of NAc glutamatergic synapses,
an effect mediated also by 2-AG release and presynaptic
CB,-receptor activation.’*** This form of endocannabi-
noid-mediated synaptic plasticity in the NAc depends on
postsynaptic metabotropic glutamate receptor 5 (mGIuRS5).
In mice, conditional ablation of mGluR5 in dopamine
D1-receptor— but not D2-receptor—expressing MSNs (D1 or
D2-MSN) by cell-type specific RNA interference®” abolishes
2-AG-dependent LTD and prevents the expression of drug,
natural reward, and brain stimulation—seeking behavior.*®
Pharmacological enhancement of 2-AG within the NAc
restores both endocannabinoid-dependent-LTD and reward-
seeking behavior in these conditional mice.* These findings
extend the disinhibition model and show that endocannabi-
noid/glutamate interaction within the NAc also contributes
to reward-seeking responses (Figure 1).%

The disinhibition mechanism within the VTA and the endo-
cannabinoid-based mechanism within D1-MSNs provide
the rationale that blockade of CB, receptors should lead to
a reduction in drug-induced increases in tonic dopamine
levels, drug-cue—associated phasic firing, and of 2-AG—
dependent LTD within the NAc (ie, mechanism-based
intervention). As a consequence of these neurochemical
and physiological events, drug-seeking behavior (craving),
drug memories, and subsequent relapse should be reduced.
In the next paragraphs, interventions based on the disrup-
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Figure 1. Two endocannabinoid-depen-
dent mechanisms have been identified
that are involved in mediating natu-
ral-reward and drug-seeking responses.
A) One mechanism relates to disinhibi-
tion of ventral tegmental area (VTA) A10
dopamine neurons by cannabinoid type 1
(CB,) receptor activation.' Under baseline
conditions, dopamine neurons within
the VTA are inhibited by GABA through
activation of GABA, receptors. Following
the presentation of drug-conditioned
cues, dopamine neurons switch into
phasic firing mode. Through this elec-
trical event, intracellular calcium levels
increase, which results in the activation
of diacylglycerol lipase (DAGL) and the
subsequent synthesis of 2-arachidonyl-
glycerol (2-AG). 2-AG is then postsynap-
tically released and acts retrogradely at
CB, receptors on GABAergic interneu-
rons. CB -receptor activation leads to an
inhibition of GABA release. This GABA
suppression results in disinhibition of do-
pamine neurons, which further promotes
burst firing. Blockade of either GABA,
receptors®3 or CB, receptors can also in-
hibit reward-seeking responses through
this mechanism.

B) The other mechanism relates to en-
docannabinoid/glutamate interactions
within the nucleus accumbens (NAc)
glutamatergic afferents from prefrontal
regions impinging on D1-medium spiny
neurons (D1-MSN). Glutamate-induced
activation of metabotropic glutamate re-
ceptor 5 (mGIuR5) leads to the induction
of DAGL and 2-AG synthesis. 2-AG is then
released and retrogradely activates Gi/o-
coupled CB, receptors to inhibit further
glutamate release. Blockade of either
mGluR5%42 or CB, receptors®“* abolishes
natural-reward- and drug-reward-seek-
ing responses.?® 2-AG, 2-arachidonylglyc-
erol; Ca?, calcium; CB,, cannabinoid type
1 receptor; DA, dopamine; DAGL, diacyl-
glycerol lipase; mGIluR5, metabotropic
glutamate receptor 5; MSN, medium
spiny neurons; NAc, nucleus accumbens;
VTA, ventral tegmental area
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tion of endocannabinoid signaling and the consequences on
addictive behavior are described.

Cannabis and synthetic cannabinoids and
the development of CUD

Cannabis is the most commonly used illegal drug in Europe.
New forms of highly potent cannabis have been developed
in recent years due to advances in cultivation, extraction,
and production techniques. Hybrid multistem plants that
provide high-potency cannabis have started to replace
established forms of the plant in both Europe and Morocco,
where much of the cannabis resin used in Europe comes
from.* Data provided by the European Union Member
States show that the A’>-THC concentration of cannabis
products found in Europe over the last decade has increased,
raising concerns about potential harm. In Europe, the esti-
mated mean potency of herbal cannabis doubled from 5%
to 10% A°-THC, and cannabis resin potency increased from
8% to 17% A°-THC in the last decade. Similar trends in
cannabis potency have been observed in the United States
over the last two decades.*

Most worry is due to the increased abuse of synthetic canna-
binoids. In Europe, about 15 years ago, this problem mainly
started with the use of spice products. It has been claimed
that the smoking of these “healthy” spice products produces
cannabinoid-like effects, even though they do not contain
cannabis. However, withdrawal phenomena such as inner
unrest, profuse sweating, and tremor, and a dependence
syndrome after the consumption of spice products were soon
described,*” and when the admixture of the synthetic canna-
binoid substances JWH-018 and CP-47-497 were found,
it became clear that spice can be a dangerous product.*
Synthetic cannabinoids are often sprayed onto plant matter
and are usually smoked and have been marketed as “herbal
smoking blends” under common names like spice.*” The
spice era marked the beginning of an increased use of
strongly potent synthetic cannabinoids that leads not only to
bizarre intoxication, as for example the “zombie” outbreak
in New York City, but also to a high mortality rate. On July
12, 2016, a synthetic cannabinoid caused mass intoxication
of 33 persons in one New York City neighborhood in an
event described in the popular press as a “zombie” outbreak
because of the appearance of the intoxicated persons.* It
was found that the herbal spice product “Karat Gold,” which
was implicated in the outbreak, contained the ultra-potent

synthetic cannabinoid methyl 2-(1-(4-fluorobenzyl)-1H-in-
dazole-3-carboxamido)-3-methylbutanoate (AMB-FU-
BINACA). In the past 10 years, almost 170 different new
synthetic cannabinoids have entered the market; there are
new compounds on the market with up to 100-fold potency
compared with A°>-THC, thus carrying a high health risk
and having considerable mortality rates.’ One myth around
cannabis is that this is a safe drug; high-potency cannabis
varieties and new synthetic ultra-potent cannabinoids—
some of which may also have long half-lives leading to a
prolonged psychoactive effect—tell another story. They can
lead to severe intoxication and death, disrupt neurodevel-
opmental processes, induce psychotic behavior, and lead to
a rapid onset of CUD.’3 Cannabis products and synthetic
cannabinoids interact with the reward system and lead to
CUD through this interaction. As outlined in the previous
chapter, we have a good understanding of the molecular
interactions of cannabinoids with the reward system and can
therefore provide mechanism-based interventions for CUD.

Current and future treatment interventions
for CUD

Panlilio and Justinova® have recently provided an excellent
summary of preclinical studies for pharmacological treatment
development for CUD, and Sloan et al*® have summarized
the experimental clinical studies and randomized clinical
trials (RCTs) for CUD. I will reflect on these two reviews
and discuss the most recent RCTs and developments in terms
of behavioral and neuromodulatory interventions.

One approach is substitution therapy with dronabinol, which
is an approved drug for other indications (AIDS-induced
anorexia, chemotherapy-induced nausea and vomiting).
Dronabinol is the principal psychoactive constituent enan-
tiomer form, "A>~THC, found in cannabis. Although substi-
tution therapy is a great success for opioid-use disorder,
dronabinol substitution has not yielded promising results.>
One possible explanation for the lack of an effect of dronab-
inol on cannabis use is a low motivation to quit. CUD
patients usually have no immediate or dramatic socioeco-
nomic or psychosocial problems, which are often seen with
cocaine, heroin, or alcohol dependence. Consequences of
use are often long term and more subtle.*® Thus, trying to
initiate change over a relatively short period (eg, patients in
the trials conducted thus far were maintained on dronabinol
for only a few weeks) may have been inadequate. Clearly,
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low motivation to quit in CUD patients applies to any other
intervention and is thus an inherent problem for treatment.

An alternative approach to substitution therapy is the
blockade of the CB, receptor by antagonists, inverse
agonists, or allosteric modulators. The application of rimon-
abant is the classic approach for a CB -receptor blockade.
Despite having an atomistic framework of CB,-receptor—
ligand interactions,'*'” the molecular mode of action of
rimonabant is still not fully understood—at high micromolar
concentrations, rimonabant behaves as an inverse agonist at
CB, receptors. This inverse agonistic effect probably results
from an off-target effect, namely by a direct inhibition of
G-protein signaling.”” However, the CB -receptor antago-
nist/inverse agonist rimonabant is not an option for the treat-
ment of CUD as it produces serious psychiatric side effects,
including anxiety, depression, and even suicidal ideation.
Several strategies are currently being pursued to circum-
vent the mechanisms leading to these serious side effects
by developing neutral antagonists or allosteric modulators.

One promising approach goes along with the recent
discovery in preclinical studies that the hormone pregneno-
lone acts as an allosteric CB -receptor inhibitor and in doing
so markedly reduces the effects of cannabis-like drugs.®
Out of this discovery, the pregnenolone derivative AEF0117
was developed, which has a long half-life, is orally avail-
able, is not converted into downstream active steroids, and
potently attenuates all of A>-THC’s effects in preclinical
behavioral models. Importantly, the allosteric modulator
AEF0117 produces none of the problems associated with
rimonabant, ie, precipitated withdrawal and mood-related
side effects. Based on these findings this AEF0117 is now in
clinical development for CUD (ClinicalTrials.gov identifier:
NCT03717272).

CBD is hyped as a panacea in the public press, and due
to its pharmacological profile, it may also be effective in
the treatment of CUD, but is there any preclinical/clinical
evidence for the efficacy of CBD in this indication? CBD
acts as a negative allosteric modulator at CB, receptors®
and also acts at several other receptors such as CB, recep-
tors, serotonin 1A (5-HT, ) receptors, and opioid recep-
tors. In its function as a negative allosteric modulator,
CBD inhibits endocannabinoid signaling; hence cannabis
varieties rich in CBD content counterbalance the psycho-
tropic effect of A>-THC. However, preclinical and human

studies do not indicate efficacy of CBD treatment in CUD.
In rodents, CBD does not alter the discriminative stimulus
properties of A>-THC nor does it affect self-administration
of A°>-THC.®' However, rodents do not reliably self-admin-
ister A>-THC; only if combined with CBD do they show a
low rate of self-administration in comparison with other
drugs of abuse.®*% Therefore, it is a challenging task to
test a CBD intervention in a rodent model of cannabinoid
self-administration. A case report shows that CBD reduced
self-reported cannabis use; however, in a human laboratory
study, oral CBD did not reduce the reinforcing or positive
subjective effects of smoked cannabis.®

Another possible pharmacological intervention is the use
of fatty acid amide hydrolase (FAAH) inhibitors. FAAH
is the principal catabolic enzyme of endogenous canna-
binoids. In a recently published RCT, treatment with the
novel FAAH inhibitor PF-04457845 reduced symptoms
of cannabis withdrawal and also reduced self-reported
cannabis use at 4 weeks of treatment with no serious
adverse events.® Not only is this a promising finding for
further clinical development for CUD, it also shows that
FAAH inhibitors can have a good safety profile. This is
notable, as the safety of FAAH inhibitors was questioned
after the observation of very severe neurological deficits
after trial treatment with BIA 10-2474, an orally admin-
istered reversible FAAH inhibitor given to healthy volun-
teers in a phase 1 study designed to assess safety.®® The
promising safety profile of PF-04457845, then, suggests
that perhaps BIA 10-2474 inhibits a protein other than
FAAH and that specific FAAH inhibitors are safe. Never-
theless, after the BIA 10-2474 catastrophe, most pharma-
ceutical companies closed their FAAH-inhibitor program;
however, the D’Souza et al® study may stimulate new
interest. Indeed, the promising finding with PF-0447845
is currently being followed up by a well-powered multsite
RCT, and results are expected by end of 2022 (Clinical-
Trials.gov identifier: NCT03386487).

Other approaches refer to behavioral therapies and neuromod-
ulatory intervention strategies. It is recognized that biases in
cognitive processing of drug-related stimuli are central to
the development and maintenance of addiction. In a recent
proof-of-principle laboratory experiment, a four-session
computerized approach-bias-modification training protocol
led to blunted cannabis-cue—induced craving at the end of
training, as well as to reduced cannabis use.’” This prom-
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ising approach of bias-modification training should be
followed up as an adjunct to psychosocial treatments for
treatment-seeking adults with CUD. Neuromodulation via
neurofeedback approaches®— currently discussed as a useful
add-on tool in the management of AUD to enhance the cogni-
tive abilities required to maintain abstinence—or repetitive
transcranial magnetic stimulation (rTMS) may further offer
a treatment alternative. A preliminary study in a few CUD
patients showed that 20 sessions of rTMS targeting the left
dorsolateral prefrontal cortex reduced craving and cannabis
use in a 4-week follow-up period.®

In summary, several promising treatment approaches
targeting the endocannabinoid system—especially allosteric
modulators at CB, receptors and FAAH inhibitors—are in
clinical development for CUD. In combination with behav-
ioral and neuromodulatory approaches and psychosocial
support, these pharmacological interventions might provide
useful therapies in the near future.

As already described, disrupting endocannabinoid signaling
reduces cue-evoked phasic dopamine responses within the
reward pathway and thereby blocks drug memories and
reward-seeking behavior (ie, craving). As a result, relapse
behavior should be reduced as well. This cascade of events
applies to all drug/cue responses, and, therefore, several
preclinical and clinical attempts have been undertaken to
interfere with the endocannabinoid system for treatment
development for AUD, nicotine use disorder, and opioid
use disorder.>#>#455 These endocannabinoid system—based
intervention approaches will be discussed in the following
section.

The endocannabinoid system as a target for
AUD and SUD treatment

Rimonabant was a very promising candidate as a smoking
cessation therapy. Convincing preclinical evidence was
obtained that rimonabant can reduce conditioned place pref-
erence, nicotine self-administration, and cue-induced rein-
statement behavior.* These preclinical studies led to a series
of clinical trials showing that a high dose of rimonabant
significantly increased abstinence rates and reduced smok-
ing-cessation—related weight gain.*7° Already described in
the previous section, rimonabant has severe side effects and
is not an option for further clinical development. Neverthe-
less, rimonabant provides the clinical proof of principle that

pharmacological interventions, being it by neutral antag-
onists or by allosteric modulators at the CB, receptor are
a promising target for the treatment of nicotine-dependent
patients, especially in patients for whom smoking-cessa-
tion—induced weight gain is a deterrent to quit smoking and
enter a treatment program.

Rimonabant did not produce a significant reduction in
relapse rate in an RCT of alcohol-dependent patients,” and
approved pharmacological treatments for AUD are limited
in their effectiveness. New drugs that can easily be intro-
duced into the clinic are needed. Currently, great hope lies in
the potential of CBD to effectively treat AUD and associated
somatic harm. Thus, a recent systematic review of preclin-
ical studies shows that CBD attenuates cue-elicited and
stress-elicited alcohol seeking, alcohol self-administration,
withdrawal-induced convulsions, and impulsive discounting
of delayed rewards in rodents.” Moreover, CBD is neuro-
protective against adverse alcohol effects and attenuates
alcohol-induced hepatotoxicity in rodent models.” Clearly,
the effect of CBD in AUD patients now has be to rigorously
tested, and indeed, a double-blind, randomized proof-of-
concept study is registered (ClinicalTrials.gov identifier:
NCTO03252756) that is currently recruiting patients to test
CBD vs placebo.

Chye et al” recently summarized all preclinical evidence
on CBD in withdrawal, reward facilitation, self-adminis-
tration, and reinstatement paradigms and provided a quite
convincing profile of CBD for further clinical development
for nicotine and opioid use disorders; however, the very
few studies conducted so far in humans generated mixed
results.” Most promising is a recent exploratory RCT were
the acute and long-lasting effects of different doses of CBD
were tested on drug-cue—induced craving in abstinent indi-
viduals with heroin use disorder. Acute CBD administration,
in contrast to placebo, significantly reduced cue-induced
craving, and long-lasting beneficial effects on craving were
also reported.” Consequently, several new clinical trials
have been initiated to test the effects of CBD on opioid
withdrawal and abstinence.

Finally, recent findings revealing a role of CB, receptors in
mediating the addictive properties of several drug classes
have also opened up a promising new avenue for the clin-
ical development of novel therapeutic approaches, including
CB,-receptor allosteric modulators.” Although CB, as well
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as CB, receptors are promising targets, we are a long way
from clinical development of a new molecule that would
act at these targets; hence CBD, which acts on both sites as
well as at other receptors and also has a good safety profile,
currently has the best potential for clinical development in
AUD and opioid use disorder.

Summary and future perspectives

The last decades have seen a major gain in understanding of
the action of cannabinoids and the endocannabinoid system
in reward processing and the development of addictive
behavior. This basic knowledge provides the rationale that
pharmacological or genetic interference with the endocan-
nabinoid system—be it on the level of CB /CB,-receptor
blockade or the inhibition of endocannabinoid synthe-
tizing enzymes, especially FAAH inhibitors—may reduce
drug craving and subsequent relapse in addicted patients.
Unfortunately, the interest of major pharmaceutical indus-
tries for clinical development of new compounds targeting
the endocannabinoid system has been severely dampened
by the worldwide withdrawal of the already approved anti-
obesity medication rimonabant (Acomplia) due to serious
psychiatric side effects. Therefore, only small biotechnology
companies and academic-driven clinical developments will
further drive medication development. In contrast to these
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