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Abstract

Introduction: Cannabidiol (CBD) has been shown to maintain bone integrity in pre-clinical models, but little is

known about the effects of delta-9-tetrahydrocannabinol (THC) on bone turnover. In this study we explored the

effects of two oral medical cannabis products on normal bone homeostasis through evaluation of markers of

bone resorption (carboxyl-terminal collagen crosslinks, CTx) and bone formation (procollagen type 1N-terminal

propeptide, P1NP; alkaline phosphatase, ALP).

Methods: This study is an analysis of secondary data from two Phase 1 double-blind, placebo-controlled trials of

Spectrum Yellow (0.9mg THC, 20mg CBD/mL of oil) and Spectrum Red (2.5mg THC, 0.3mg CBD/softgel).

Healthy participants (n = 38 men, 45 women) were randomized to receive 5–20mg THC (CBD levels varied as

a function of administered product) or placebo daily (BID) for 7 days. Bone markers were assessed at baseline,

upon completion of product administration (day 8), and after a 5-day washout (day 13).

Results: All bone markers were significantly higher in men at baseline ( p £ 0.008). For CTx, there was a significant

day · group interaction (F = 3.23, p = 0.04); CTx levels were significantly lower in participants treated with Spec-

trum Red (b =�164.28; 95% confidence interval [CI],�328 to�0.29; p = 0.04) and marginally lower in participants

treated with Spectrum Yellow (b =�157.31; 95% CI,�323 to 8.68; p = 0.06) versus placebo on day 8. For P1NP and

ALP, there were no significant differences between treatments across study days. Bone marker values outside the

reference range (RR) were observed; CTx > RR (n = 71) was predominantly (85.9%) observed in male participants,

whereas P1NP > RR (n = 100) was more evenly distributed between sexes (53.0% in men). These were not con-

sidered clinically significant and did not differ between treatment groups.

Conclusions: These are the first interventional human data on the effect of cannabinoids on biomarkers of bone turn-

over. Short-term treatment with CBD- or THC-dominant medical cannabis products resulted in attenuation of a marker

of bone resorption. Although the attenuation was not clinically significant, this finding may be indicative of protective

properties of cannabinoids in bone. Further researchover longer dosingdurations in individuals exhibitingbone-specific

conditions (e.g., osteoporosis) is warranted. ClinicalTrials.gov IDs: ACTRN12619001723178 and ACTRN12619001450101.
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Introduction

As a result of changing cannabis regulatory frameworks
and social perceptions, there is growing interest in can-
nabis products for both medical and recreational use.
Phytocannabinoid formulations generally include
varying concentrations of cannabidiol (CBD) and
delta-9-tetrahydrocannabinol (THC), which have the
potential to produce a variety of therapeutic effects
through interaction with various molecular targets.
Although the anti-inflammatory, immunomodulatory,
cognitive, and cardiovascular effects of cannabis have
been more widely studied,1–4 little is known about
how phytocannabinoids affect bone health.

Bone metabolism is a continual cycle of osteoclastic
bone destruction and osteoblastic bone formation,
which maintain bone tissue quantity and structural in-
tegrity. Both osteoclasts and osteoblasts produce the
endocannabinoids anandamide (AEA) and 2-arachi-
donoylglycerol (2-AG) in vitro.5 Moreover, bone and
cartilage cells express cannabinoid receptors CB1 and
CB2,6 and activation of CB2 increases osteoblast prolif-
eration7 while reducing osteoclast numbers.8 In mice,
genetic knockout of CB1 or CB2 indicates that both re-
ceptors play a role in the skeleton, but the effects are
sex, age, and hormonal status dependent.5,6,9–12 Several
other receptors relevant to cannabinoid signaling have
also been implicated in bone metabolism, including
GPR55 and TRPV subtypes 1, 2, 4, 5, and 6.13,14

There is a paucity of pre-clinical data regarding the
effects of THC, a CB1/CB2/GPR55 agonist,15,16 on
bone. In one report, THC had no significant effect on
fracture healing in rats.17 On the contrary, CBD,
which acts as an antagonist of CB1/CB2/GPR5513,15

but an agonist at several TRPV channels,18–20 has
been shown to maintain bone integrity in rodent
and cellular models by inducing osteoblastic bone
formation17,21–23 and/or reducing osteoclastic bone
resorption.13,23–25

Available human data are currently limited to cross-
sectional surveys wherein exact cannabis product
composition and frequency/duration of use was not con-
trolled. Data from these epidemiological studies are con-
flicting; whereas one study found heavy cannabis use
(> 5000 lifetime cannabis smoking episodes) to be both
directly and indirectly (by lowering body mass index
[BMI]) associated with decreased bone mineral density
(BMD), high bone turnover, and an increased risk of frac-
ture,26 data from the National Health and Nutrition
Examination Survey (2007–2010) suggest a lack of associ-
ation between any level of cannabis use and BMD.27 To

date, no interventional human study has explored the ef-
fect of cannabinoids on indicators of bone health.
Serum bone markers have predictive validity for

eventual changes in BMD,28,29 and changes may be
measurable more immediately following treatment
initiation.30 This study is a secondary data analysis
from two Phase 1, randomized, double-blind, placebo-
controlled, multiple-dose safety, pharmacokinetics and
pharmacodynamics trials of commercially available
oral medical cannabis products, Spectrum Yellow oil
and Spectrum Red softgels.31,32 The purpose of this
analysis was to examine the effects of these CBD- or
THC-dominant products on normal bone homeostasis
through evaluation of markers of bone resorption
(carboxyl-terminal collagen crosslinks [CTx]) and
bone formation (procollagen type 1N-terminal pro-
peptide [P1NP] and alkaline phosphatase [ALP]) in
healthy men and women.

Materials and Methods

Ethics statement

All study procedures were conducted under protocols ap-
proved by the Alfred Hospital Ethics Committee (Project
No. 591/19, approved November 25, 2019; Project No.
594/19; approved December 16, 2019), in accordance
with the International Conference on Harmonization
Good Clinical Practice guidelines, the Declaration of Hel-
sinki, and local Australian laws and regulations. Written
informed consent was obtained from each study partici-
pant before initiation of study-related procedures.

Study design

Study methodology has previously been published,31,32

and is summarized in Figure 1. In brief, healthy partici-
pants were recruited into each of two Phase 1, random-
ized, double-blind, placebo-controlled, multiple-dose
trials to assess the safety, tolerability, pharmacokinetics,
and pharmacodynamics of oral medical cannabis prod-
ucts dominant in CBD (Spectrum Yellow oil; 20mg/mL
CBD, 0.9mg/mL THC and < 0.05% terpenes in medium
chain triglyceride [MCT] oil) or THC (Spectrum Red No.
2 softgels; 2.5mg THC, 0.03mg CBD and 0.08% terpenes
in a soft gelatin capsule containingMCT, gelatin, glycerin,
titanium dioxide, and color). Within each study, partici-
pants were randomized into treatment groups in
which they received, in divided doses, Spectrum Yellow
oil, Spectrum Red softgels, or placebo (Table 1). Study
products were acquired from Canopy Growth Corpora-
tion (Smiths Falls, ON, Canada).
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Study participants were confined to a residential re-
search facility and received study medication twice
daily, approximately every 12 h after a standardized
meal for 6 days, plus a single dose in the morning on
day 7. Participants were discharged after a 32-h blood
draw on day 8, and returned to the facility on days 9,
10, 11, and 13 for blood draws and study assessments.

Bone markers

Blood samples for assessment of markers of bone re-
sorption (CTx) or bone formation (P1NP, ALP) were
collected upon admission to the residential research fa-
cility (baseline, day �1), at the 32-h postdose blood
draw (day 8), and at study termination, at the 144-h
postdose blood draw (day 13). Sample collection time
ranged from 09:31 to 21:44 hours and differed signifi-
cantly between timepoints (all pairwise comparisons
p £ 0.01), occurring later in the day on day 8 (16:39
– 3:12) versus day �1 (13:20 – 1:08) or day 13 (11:06 –
1:42) owing to the nature of the study design. However,
there were no significant differences in sample collec-
tion time between treatments at baseline (all ps‡ 0.99),

day 8 (all ps‡ 0.44), or day 13 (all ps‡ 0.80). With
the exception of a small number of samples (n= 4,
day 8; n = 3, day 13), serum was collected under fasted
conditions.

All samples were shipped in primary collection tubes
at room temperature to Australian Clinical Labs (CTx,
ALP) or Alfred Health Pathology (P1NP) for analysis.
Age- and sex-specific laboratory reference ranges (RR)
were based on recommendations from the Australasian
Association of Clinical Biochemists (AACB) Reference
Intervals Harmonisation Project.33,34

Statistics

Owing to sample size restrictions, dosing groups were
pooled, and participants were grouped by treatment
(Spectrum Yellow, Spectrum Red, or placebo). Descrip-
tive statistics (means and standard deviations [SDs])
were calculated by treatment and sex for CTx, P1NP,
and ALP at each timepoint. To inform future study
planning, associations of baseline bone markers and
prognostic factors (age, BMI, and sex) across groups
were assessed using Pearson correlations and multiple
regression models.

Linear mixed-effects models with a random inter-
cept for participant were fit to evaluate treatment
group differences across days. Fixed effects included
treatment group, day (�1, 8, and 13), and the interac-
tion of treatment group and day. Sex and age were in-
cluded as additional fixed effects owing to their known
association with bone turnover markers. Time of sam-
ple collection (minutes after midnight) was also in-
cluded because of variation across sample collection
days. The treatment · day interaction term was evalu-
ated for statistical significance using multiple degree
of freedom F tests based on type III sum of squares.

FIG. 1. Summary of study design.

Table 1. Summary of Treatment Groups and Dose Levels
Across Spectrum Yellow Oil and Spectrum Red
Softgel Studies

Product CBD (mg) THC (mg) n (sex)

Spectrum Yellow 120 5.4 9 (6F:3M)
240 10.8 8 (2F:6M)
360 16.2 9 (4F:5M)
480 21.6 9 (6F:3M)

Spectrum Red 0.2 5 8 (4F:4M)
0.4 10 8 (4F:4M)
0.6 15 8 (6F:2M)
0.8 20 8 (5F:3M)

Placebo 0 0 16 (8F:8M)
Total 83 (45F:38M)

F, female; M, male.
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Significant interactions were followed with simple ef-
fects and simple contrasts comparing treatments
within each day. In the event of nonsignificant interac-
tions, marginal means averaging over levels of treat-
ment or day were calculated. Alpha level was
corrected for pairwise comparisons using Tukey’s
procedure.

As an exploratory follow-up to significant Spectrum
Red or Spectrum Yellow effects, the magnitude of treat-
ment effects at each dose level within Spectrum Red
and Spectrum Yellow products was evaluated using
the same mixed-effects models described previously,
which included a random intercept for subject and
fixed effects of age, sex, treatment group (with placebo
serving as the reference group), day, and the interaction
of treatment group and day. Treatment effects were
measured as the difference in the change from baseline
to day 8 in treatment groups relative to placebo (i.e.,
[placebo day 8 � placebo baseline] � [treatment day
8 � treatment baseline]). Owing to the reduced sample
size and resultant insufficient power of these contrasts,
null hypothesis significance tests were not performed;
instead, treatment effect estimates were accompanied
by 95% confidence intervals (CIs) to reflect the preci-
sion of estimates.

Proportions of values outside normal laboratory RR
were calculated by treatment group, sex, and day. Infer-
ential statistics were not performed on these propor-
tions owing to the loss of power after dichotomization.35

Analyses were conducted using R version 4.1236 or
SPSS version 28. The R packages lme437 and emmeans38

were used for mixed-effects modeling and simple-
effect contrast calculation, respectively. Data figures
were generated using GraphPad Prism version 8.4.2
for macOS.

Results

Participant characteristics

Among the total sample of 83 participants in this anal-
ysis, mean– SD [range] participant age was 27.6 – 6.4
[18–53] years, and BMI was 23.6 – 3.0 [18.3–29.6]
kg/m2. Additional demographic data from these co-
horts have previously been presented.31,32

Evaluation of prognostic factors

Across all participants, age significantly correlated with
baseline CTx (r =�0.40, p < 0.01), P1NP (r=�0.38,
p < 0.01), and ALP (r =�0.22, p = 0.04), and BMI sig-
nificantly correlated with baseline CTx (r=�0.40,
p < 0.01) and P1NP (r =�0.25, p= 0.03), but not ALP

(r = 0.06, p = 0.61). All measured bone markers were
significantly higher in male versus female participants
at baseline (Supplementary Fig. S1). Collectively, age,
sex, and BMI accounted for 33.6% (95% CI, 17.7% to
49.5%) of the variance in baseline CTx, 22.6% (95%
CI, 7.4% to 37.8%) of the variance in baseline P1NP,
and 19.8% (95% CI, 5.1% to 34.6%) of the variance in
baseline ALP.

Quantitative levels of bone markers

Results of bone marker analyses are summarized in
Table 2 and Figure 2.
For CTx, results of linear mixed-effects modeling

revealed a significant treatment· day interaction
(w2= 16.58, p = 0.002). There was a significant simple
effect of treatment on day 8 (F = 3.23, p = 0.04), but
not at baseline or day 13 (all p‡ 0.23). Simple contrasts
comparing groups on day 8 showed that CTx was sig-
nificantly lower in participants treated with Spectrum
Red versus placebo (b =�164.28; 95% CI, �328 to
�0.29; p = 0.04) and marginally lower in Spectrum Yel-
low versus placebo (b =�157.31; 95% CI,�323 to 8.68;
p= 0.06), but not Spectrum Yellow versus Spectrum
Red (b =�6.97; 95% CI, �142.50 to 129; p = 0.99).
Six days after the final dose of study treatment (day
13), CTx returned to baseline levels in all groups;
there was no significant difference between treatments
on day 13 ( p = 0.23), nor between days �1 and 13
across treatments ( p = 0.09).
Exploratory follow-up analyses evaluating the mag-

nitude of treatment effects at each dose level within
Spectrum Yellow and Spectrum Red products revealed
that treatment effect estimates were largely comparable
across doses (Fig. 3). The lowest Spectrum Yellow dose
(120mg CBD + 5.4mg THC) exhibited a somewhat
larger effect; however, given the small sample size for
these comparisons, this may reflect sampling error.
Of note, there was no appreciable difference across
Spectrum Yellow and Spectrum Red products at com-
parable levels of THC.
For P1NP, linear mixed-effects modeling revealed

that the treatment· day interaction was not significant
(w2= 7.20, p= 0.13); main effects of day and treatment
were evaluated separately. Collapsing across treat-
ments, P1NP differed significantly between baseline
and day 13 (b = 6.34; 95% CI, 2.14 to 10.59; p = 0.001)
and days 8 and 13 (b = 6.02; 95% CI, 0.003 to 12.04;
p= 0.05), but not between baseline and day 8
( p = 0.99). There were no significant differences be-
tween treatments (all p ‡ 0.68) across study days.
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For ALP, linear mixed-effects modeling revealed that
the treatment· day interaction was not significant
(w2 = 8.44, p= 0.08); main effects of treatment and
day were evaluated separately. Collapsing across treat-
ments, ALP differed significantly between baseline and
day 8 (b =�3.64; 95% CI,�6.64 to�0.65; p = 0.01), but
not between baseline and day 13 nor day 8 and day 13
( ps > .11). There were no significant differences be-
tween treatments (all ps ‡ 0.33) across study days.

Sensitivity analyses were conducted excluding par-
ticipants whose blood was sampled under nonfasting
conditions and all effect estimates reported above
remained largely similar.

Proportions of bone marker values

outside of RR

Although several participants had bone marker values
above RR for their age and sex,33 these were not

FIG. 2. Serum bone markers following administration of placebo, Spectrum Yellow oil, or Spectrum Red

softgels in healthy adults. Mean– SEM values are given for (A) CTx, (B) P1NP, and (C) total ALP. Blood was

collected at baseline (day �1), following 7 days of twice-daily dosing (day 8), and at study termination (day 13).

p<0.05 denotes significant difference between treatments at a given timepoint. SEM, standard error of the mean.

FIG. 3. Treatment effect estimates and corresponding 95% confidence intervals for serum CTx on day 8

following treatment with Spectrum Yellow oil or Spectrum Red softgels at multiple dose levels of CBD and

THC. CTx, carboxyl-terminal collagen crosslinks.
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considered clinically significant (Table 2). The number
of participants with CTx or P1NP values >RR increased
when comparing day �1 (CTx: n= 17; P1NP: n= 34)
and day 8 (CTx: n= 32; P1NP: n= 40), decreasing by
day 13 (CTx: n= 22; P1NP: n= 26). CTx elevation oc-
curred disproportionately across sexes; 85.9% (n= 61
of 71 total observations) of total CTx results >RR
were observed in men. P1NP elevation was more evenly
distributed between sexes; 53.0% (n= 53 of 100 total ob-
servations) of P1NP results >RR were observed in men.
ALP values remained within RR for all participants at all
timepoints.

Discussion

To date, human work assessing the effects of phytocan-
nabinoids on indicators of bone health has been limited
to epidemiological data,26,27 and only one previous
human study explored bone turnover markers associ-
ated with cannabis use. In a cross-sectional study,
both CTx and P1NP were elevated in heavy cannabis
users as compared with a cigarette-smoking control
group.26 As exact cannabis product composition and
frequency/duration of use could not be controlled,
the association of specific phytocannabinoids or canna-
bis products with bone turnover markers has not yet
been established.
In our study, participants were randomized to receive

one of four doses of Spectrum Yellow oil (120–480mg
CBD and 5.4–21.6mg THC daily) or Spectrum Red soft-
gels (0.06–0.24mg CBD and 5–20mg THC daily), two
well characterized commercially available cannabis
products. The studied dosages of THC and CBD were
based on the primary aim of the parent trials to evaluate
the safety, pharmacokinetics, and pharmacodynamics of
THC and CBD. This large dose range was intended to
closely approximate real-world conditions in individuals
who consume cannabis for medical purposes and to best
inform physician and patient decision-making regarding
a variety of dosing parameters. Future studies with lower
dosages of THC and CBD will be more relevant for in-
dividuals who consume cannabis for nonmedical pur-
poses. Owing to sample size restrictions, we were not
able to compare CBD and/or THC dose level within
treatments with bone marker changes. That both Spec-
trum Yellow and Red products were found to produce
an equal attenuation of CTx may be an indication that
both CBD and THC act on this biomarker but may
also be confounded by the presence of both cannabi-
noids, although at different concentrations, in both
study products.

Sex differences in cannabinoid function, pharmacol-
ogy, and receptor distribution have been noted in pre-
clinical literature,39–41 and bone marker expression and
bone disease risk are known to differ between men and
women across different age groups.42–48 This study
recruited both male and female participants but was
not designed to examine differences in bone marker re-
sponse between sexes. In agreement with previous liter-
ature,42,43 we observed higher baseline levels of all
three bone markers in this healthy population. How-
ever, the overall response to cannabinoid products fol-
lowed a similar pattern in men and women. Whether
this uniform effect across sexes is maintained in pa-
tient populations exhibiting bone-specific conditions
is unknown.

Bone markers, particularly markers of resorption,
are known to follow a diurnal rhythm.49,50 Peak levels
of serum CTx have been shown to occur in the early
morning (05:00–08:00 hours), with nadir in the early
afternoon (14:00 hours), rising again by late afternoon
(17:00 hours). Across treatments, we observed higher
CTx on day 8 (mean collection time= 16:39 hours) as
compared with days �1 (13:20 hours) and 13 (11:06
hours). Collection time variation may also explain
the prevalence of findings outside RR, because RR is
established following optimal (morning, fasted)
serum collection procedures. As bone markers were
an exploratory endpoint in the original study design,
serum collection times were not optimized for CTx
measurement.

Future work in this area should ensure serum collec-
tion is standardized across participants, occurring in
the morning following an overnight fast, as fasting sig-
nificantly reduces individual diurnal variations.51 Of
importance, in this study, time of serum collection
was uniform between treatments at each timepoint.
Differences in CTx between participants receiving can-
nabis products versus placebo on day 8 are therefore
expected to be owing to the products themselves, rather
than serum collection timing. Bone turnover markers
are also known to be affected by age, BMI, recent frac-
ture, tobacco/alcohol intake, and in women, phase of
the menstrual cycle, pregnancy, lactation, and meno-
pausal status.52–58

Within person variation in the Australian popula-
tion is estimated at 8% (ALP and P1NP) to 10%
(CTx), whereas clinically relevant least significant
change (LSC) in CTx and P1NP during antiresorptive
treatment is generally defined as 2.8 times the biologi-
cal variation (*30% and *21%, respectively).59
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Although not an ideal comparison, we observed a dif-
ference of �24.2% (Spectrum Yellow) and �24.6%
(Spectrum Red) when oral medical cannabis products
were compared with placebo treatment over a 7-day
dosing period. This finding is in line with pre-clinical
work, which has demonstrated *18% decrease in
CTx following repeated CBD dosing (10mg/kg) in
healthy male mice over 8 weeks.13 Whether longer dos-
ing duration and/or treatment of populations with ele-
vated bone turnover would further attenuate CTx levels
or modulate bone formation markers above LSC re-
mains to be established.

Total ALP has been shown to be elevated in rodents
and dogs,60–63 but uncommonly in humans,64,65 follow-
ing repeated administration of cannabinoids, particularly
CBD. In agreement with existing human data, cannabi-
noid administration did not result in ALP elevation in
this study. Although ALP activity is often associated
with liver function, serum ALP also originates from sev-
eral other tissues, including bone (*50% of total ALP).30

Total ALP activity has traditionally been used as a ther-
apeutic marker in multiple bone conditions,66 but tissue-
specific isoform assays have become available. Future
work should evaluate activity of the bone-specific ALP
isoform, which is more directly correlated with the num-
ber and differentiation state of osteoblasts.67

This is the first interventional human study to explore
the effect of cannabinoids on biomarkers of bone turn-
over. In healthy adults, short-term treatment with com-
mercially available medical cannabis products, Spectrum
Yellow oil and Spectrum Red softgels, did not result in
clinically significant changes in bone turnover markers.
However, as compared with placebo treatment, oral
medical cannabis products attenuated the increase in a
resorption marker, CTx, following 7 days of twice
daily administration. This finding may be indicative of
protective properties of cannabinoids in bone. Further
research following longer term treatment in individuals
exhibiting bone-specific risk factors and/or medical con-
ditions (e.g., osteopenia, osteoporosis) is warranted.
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Abbreviations Used

ALP¼ alkaline phosphatase

BMD¼ bone mineral density

BMI¼ body mass index

CBD¼ cannabidiol

CI¼ confidence interval

CTx¼ carboxyl-terminal collagen crosslinks

LSC¼ least significant change

MCT¼medium chain triglyceride

P1NP¼ procollagen type 1N-terminal

propeptide

RR¼ reference range

SD¼ standard deviation

SEM¼ standard error of the mean

THC¼ delta-9-tetrahydrocannabinol

BONE TURNOVER AND CANNABINOIDS 309


