
Citation: Al-Khazaleh, A.K.; Jaye, K.;

Chang, D.; Münch, G.W.; Bhuyan, D.J.

Buds and Bugs: A Fascinating Tale of

Gut Microbiota and Cannabis in the

Fight against Cancer. Int. J. Mol. Sci.

2024, 25, 872. https://doi.org/

10.3390/ijms25020872

Academic Editors: Magdalena Bartnik

and Adrianna Sławińska-Brych
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Abstract: Emerging research has revealed a complex bidirectional interaction between the gut micro-

biome and cannabis. Preclinical studies have demonstrated that the gut microbiota can significantly

influence the pharmacological effects of cannabinoids. One notable finding is the ability of the gut

microbiota to metabolise cannabinoids, including ∆
9-tetrahydrocannabinol (THC). This metabolic

transformation can alter the potency and duration of cannabinoid effects, potentially impacting their

efficacy in cancer treatment. Additionally, the capacity of gut microbiota to activate cannabinoid

receptors through the production of secondary bile acids underscores its role in directly influencing

the pharmacological activity of cannabinoids. While the literature reveals promising avenues for

leveraging the gut microbiome–cannabis axis in cancer therapy, several critical considerations must

be accounted for. Firstly, the variability in gut microbiota composition among individuals presents a

challenge in developing universal treatment strategies. The diversity in gut microbiota may lead to

variations in cannabinoid metabolism and treatment responses, emphasising the need for person-

alised medicine approaches. The growing interest in understanding how the gut microbiome and

cannabis may impact cancer has created a demand for up-to-date, comprehensive reviews to inform

researchers and healthcare practitioners. This review provides a timely and invaluable resource

by synthesizing the most recent research findings and spotlighting emerging trends. A thorough

examination of the literature on the interplay between the gut microbiome and cannabis, specifically

focusing on their potential implications for cancer, is presented in this review to devise innovative

and effective therapeutic strategies for managing cancer.

Keywords: gut microbiota; Cannabis; cancer; Cannabinoids; THC; CBD; gut microbiome;

personalized medicine; microbiome-cannabis axis

1. Introduction

The gut microbiota is a dynamic and diverse community of microorganisms resid-
ing within the gastrointestinal tract, consisting of bacteria, archaea, viruses, and fungi.
This complex ecosystem is fundamental in various physiological processes, including nutri-
ent metabolism, immune regulation, and protection against pathogenic invaders [1,2]. Ad-
ditionally, the gut microbiota is now recognised as a crucial modulator of drug metabolism
and efficacy along with the liver, influencing the bioavailability and activity of numerous
pharmaceutical agents [3–8].

Cannabis sativa, a plant from the Cannabis species, has been used for medicinal and
recreational purposes for centuries. The therapeutic properties of cannabis are mainly at-
tributed to its active compounds known as cannabinoids, with delta-9-tetrahydrocannabinol
(THC) and cannabidiol (CBD) being the most extensively studied [9]. The endocannabi-
noid system (ECS) in the body, comprising cannabinoid receptors, endogenous ligands

Int. J. Mol. Sci. 2024, 25, 872. https://doi.org/10.3390/ijms25020872 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25020872
https://doi.org/10.3390/ijms25020872
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7809-3401
https://orcid.org/0000-0002-9736-0197
https://doi.org/10.3390/ijms25020872
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25020872?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 872 2 of 18

(endocannabinoids), and enzymes, plays a pivotal role in mediating the effects of cannabis
on various physiological processes [10]. Recent research advancements have uncovered
a bidirectional relationship between the gut microbiota and the ECS, underpinning the
potential influence of gut microbiota on cannabinoid metabolism and vice versa [11,12].
Consequently, investigations into the interaction between gut microbiota and cannabis
have gained significant attention, given its potential impact on human health and diseases.

This review aims to decipher the interaction between human gut microbiota and
cannabis constituents, predominantly cannabinoids, and their potential implications in
carcinogenesis, cancer progression, and therapeutic approaches. Firstly, it explores the
existing literature highlighting the role of the gut microbiota in influencing the metabolism,
absorption, and bioavailability of cannabinoids. Understanding these interactions offers
insights into how specific gut microbial strains could modify the effects of cannabinoids,
possibly impacting their anticancer properties or adverse effects. In addition, this study
aims to uncover how cannabinoids, in return, can shape the composition and behaviour of
the gut microbiota. Recent reviews have investigated the ability of the gut microbiota to
mediate the effects of cannabinoids, including their metabolism and distribution throughout
the body [13–16]. Furthermore, research has explored the bidirectional nature of this
interplay, examining how cannabinoids might influence the makeup and functionality of
the gut microbiota.

Through investigating whether distinct cannabinoids exhibit prebiotic or antimicrobial
properties, studies have aimed to discern whether cannabis-derived compounds could
foster advantageous gut microbial populations, consequently contributing to strategies
for averting or treating cancer. While the precise mechanisms underpinning this interplay
are still in the elucidation process, several investigations have commenced delineating the
potential import of this interface, particularly in the context of cancer.

1.1. Cancer and Gut Microbiota

Cancer remains a leading cause of morbidity and mortality worldwide, necessitating
continuous efforts to develop novel therapeutic strategies. Cancer also is a complex disease,
and there is no single cause. However, some foods and dietary components may increase
or decrease the risk of developing certain types of cancer [17–19]. Moreover, some of the
carcinogens found in food include Acrylamide. This chemical is formed when starchy
foods are cooked at high temperatures, such as frying, baking, or roasting. Acrylamide is
found in French fries, potato chips, and coffee [17]. HCAs and PAHs are also formed when
muscle meat, including beef, pork, fish, and poultry, is cooked using high-temperature
methods such as grilling or broiling. Exposure to these chemicals has been linked to an
increased risk of colorectal, pancreatic, and prostate cancers [20,21].

Furthermore, nitrites and nitrates chemicals are used as preservatives in processed
meats such as bacon, ham, and hot dogs. When these meats are cooked at high temperatures,
they can form nitrosamines, known as carcinogens [22,23]. It is important to note that while
some foods and dietary components may increase the risk of cancer, there is no evidence
that specific foods can cause or cure cancer [24,25]. A healthy diet that includes a variety of
fruits, vegetables, whole grains, and lean proteins can help reduce the risk of cancer and
other chronic diseases [24–27].

The interplay between gut microbiota and cancer has been an emerging area of inves-
tigation, unveiling the potential influence of microbial communities on the onset of cancer,
progression, and therapeutic outcomes. Recent scientific endeavours have highlighted the
consequences of perturbations in gut microbiota composition and diversity, commonly
called dysbiosis. Such perturbations can contribute to chronic inflammation and undermine
immune surveillance, ultimately promoting an environment conducive to the initiation
and development of carcinogenesis [28,29]. Moreover, microbial metabolites arising from
dietary substrates and gut fermentation have become critical contributors to cancer-related
pathways. Short-chain fatty acids (SCFAs), including butyrate, acetate, and propionate,
produced as a result of fibre fermentation in the gut, exert notable anti-inflammatory and an-
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tiproliferative effects, thus influencing the microenvironment of cancer cells and potentially
curtailing cancer risk [30]. Conversely, certain metabolites, such as secondary bile acids
and trimethylamine N-oxide (TMAO), have been implicated in processes associated with
DNA damage, genomic instability, and angiogenesis, fostering an environment conducive
to carcinogenesis [31,32]. Furthermore, the interplay between the gut microbiota, metabo-
lites, and cancer therapies accentuates their potential role in modulating drug efficacy and
patient outcomes [33,34].

The human gut microbiota is a highly diverse and interconnected ecosystem of trillions
of microbial cells and thousands of microbial species. Its composition is influenced by
various factors, including diet, age, genetics, and environmental exposures [35]. A balanced
gut microbiota is associated with overall health, promoting digestion, immune system
maturation, and protecting against pathogenic infections [36,37]. The gut microbiota
also participates in the metabolism of dietary compounds and endogenous molecules,
contributing to the production of bioactive metabolites that can affect host physiology [38].
Moreover, it has been implicated in modulating the efficacy and toxicity of numerous drugs,
including chemotherapeutic agents, through its enzymatic activities and interactions with
drug metabolites [39,40].

1.2. Cannabis Overview

Cannabis, belonging to the Cannabaceae family, has a rich history of diverse applica-
tions, encompassing medicinal, recreational, and industrial uses. Taxonomically, the genus
Cannabis presents uncertainties, with three disputed species, C. sativa, Cannabis indica, and
Cannabis ruderalis, leading to alternative classifications suggesting subspecies or a singular
undivided species [41–43]. The plant is recognized as an annual, dioecious, flowering
herb with palmately compound or digitated leaves, believed to be indigenous to Asia [44].
Industrially, the plant yields hemp fibre for diverse applications, including paper, clothing,
biofuel, and food products [45,46]. The chemical composition of cannabis is complex, com-
prising over 400 molecules, with approximately 100 identified as cannabinoids, alongside
terpenoids, flavonoids, and essential fatty acids [47,48]. Classifying the cannabis plant can
be difficult because of the variations in its appearance, both in the wild and in cultivation.
Thus, this can create uncertainties in the plant’s classification system [49]. Additionally,
the two most researched compounds found in cannabis are THC and CBD [50]. THC is
responsible for the psychotropic effects of cannabis, while CBD is non-intoxicating and
possesses various therapeutic properties, including anti-inflammatory, analgesic, and anxi-
olytic effects [51,52]. The ECS is a key player in mediating the effects of cannabinoids in
the human body. Cannabinoid receptors, CB1 and CB2, are a part of the ECS and widely
distributed throughout the body, including the gastrointestinal tract, and regulate various
physiological functions, such as pain perception, appetite, and immune responses [16,53].
Preclinical and clinical studies have demonstrated that cannabinoids exhibit anticancer
properties by inducing apoptosis, inhibiting cell proliferation, and inhibiting angiogenesis
in various cancer types [54,55]. Moreover, cannabis has shown promise in alleviating cancer
and chemotherapy-related symptoms such as pain, nausea, and loss of appetite in people
living with cancer [56].

2. Cannabis in Cancer Research

Cannabis has attracted significant attention in recent years for its potential anticancer
properties. Preclinical studies using various cancer cell lines and animal models have
demonstrated that cannabinoids, such as THC and CBD, possess antitumor effects through
multiple mechanisms [54,55]. These mechanisms include induction of apoptosis, inhibition
of cell proliferation, suppression of angiogenesis (blood vessel formation supporting tu-
mour growth), and prevention of metastasis [55]. Furthermore, cannabinoids have clinically
shown promise in alleviating cancer-related symptoms and improving the quality of life
of people with cancer. For instance, cannabis-based products have been used to manage



Int. J. Mol. Sci. 2024, 25, 872 4 of 18

chemotherapy-induced nausea and vomiting, reduce cancer-related pain, and stimulate
appetite in people living with cancer [56,57].

2.1. Anticancer Properties of Cannabinoids

2.1.1. Induction of Apoptosis

Apoptosis is a crucial process for maintaining tissue homeostasis, and its dysregulation
can contribute to cancer development and progression. Cannabinoids, particularly THC,
have been shown to induce apoptosis in various cancer cell lines, including breast, prostate,
lung, and colon cancer cells (Figure 1) [54,55]. The pro-apoptotic effects of cannabinoids are
often mediated through the activation of cannabinoid receptors, especially CB1 and CB2,
leading to the generation of reactive oxygen species and subsequent cell death signalling
cascades [55,58].
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Cannabinoids have been reported to suppress cancer cell proliferation by arresting
the cell cycle and preventing cell division. In various cancer cell lines, such as MDA-MB-
231 human breast cancer, prostate cancer (PC3, DU145, LNCaP), and prognostic colon
cancer (Ki-67) cells, cannabinoids have demonstrated the ability to downregulate key
cell cycle regulatory proteins and inhibit cell cycle progression, leading to reduced cell
proliferation [55,59–61].

Alsherbiny et al. investigated the potential interactions between CBD and five com-
monly used chemotherapeutic drugs (docetaxel, doxorubicin, paclitaxel, vinorelbine, and
7-ethyl-10-hydroxycamptothecin) in MCF7 breast adenocarcinoma cells using multiple
synergy quantitation models [62]. The authors observed a strong synergy between CBD
and 7-ethyl-10-hydroxycamptothecin (SN-38) and vinorelbine (VIN) at various molar ra-
tios [62]. Interestingly, synergy was observed between CBD and all the chemotherapeutic
drugs when combined at a specific molar ratio of 636:1. However, some discordant synergy
trends were noted, necessitating further validation [62]. The study found that combina-
tions of CBD with chemotherapeutic drugs enhanced apoptosis in MCF7 cells compared
to individual drug treatments or the negative control. A shotgun proteomics analysis
revealed 121 dysregulated proteins in CBD-treated MCF7 cells compared to the negative
control [62]. Notably, the authors identified previously unreported cytotoxic mechanisms of
CBD, including the potential inhibition of topoisomerase II β and α, cullin 1, V-type proton
ATPase, and CDK-6, along with disrupted energy production and reduced mitochondrial
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translation. When CBD was combined with SN-38 (CSN-38), 91 significantly dysregulated
proteins were identified [62]. These proteins were associated with key molecular path-
ways such as telomerase regulation, cell cycle control, topoisomerase I function, EGFR1
signalling, protein metabolism, TP53-mediated DNA repair, death receptor signalling, and
RHO GTPase signalling. These pathways were potentially attributed to the synergistic
effects observed between CBD and SN-38 [62].

2.1.2. Suppression of Angiogenesis

Angiogenesis, the formation of new blood vessels, is essential for tumour growth and
metastasis. Cannabinoids, particularly CBD, have been shown to inhibit angiogenesis in
both in vitro and in vivo studies. Notably, CBD can modulate various signalling pathways
involved in angiogenesis, including the vascular endothelial growth factor (VEGF) pathway,
thus reducing the formation of new blood vessels in tumours [63,64].

2.1.3. Prevention of Metastasis

Metastasis is a hallmark of cancer and a major contributor to cancer-related mortality.
Several studies have indicated that cannabinoids can inhibit metastatic processes, including
tumour cell migration, invasion, and adhesion, such as in the highly invasive HeLa cervical
cancer, human cervical (C33A), lung carcinoma (A549), and prostate cancer cell lines [65,66].
The downregulation of matrix metalloproteinases (MMPs) and the modulation of cell
adhesion molecules were reported mechanisms by which cannabinoids exert their anti-
metastatic effects [67].

2.2. Potential Role of Gut Microbiota in Modulating the Anticancer Effects of Cannabis

Emerging evidence suggests that the gut microbiota could play a critical role in modu-
lating the anti-cancer effects of cannabis. As aforementioned, gut microbiota can metabolize
cannabinoids, potentially influencing their pharmacological activity and bioavailability.
Moreover, gut microorganisms produce various metabolites that can interact with the
ECS and affect its regulation [68]. Consequently, the composition and function of gut
microbiota may impact the local concentration and activity of cannabinoids in the gas-
trointestinal tract, where gut cancers often originate. Furthermore, the gut microbiota has
been linked to systemic immune responses and inflammation, which can influence the
tumour microenvironment and cancer progression [69,70]. It is conceivable that alterations
in the gut microbiota composition could affect the immune response to cannabinoids and,
consequently, their anticancer effects.

2.3. Implications for Cancer Treatment

Understanding the influence of gut microbiota on cannabis pharmacology has sig-
nificant implications for cancer treatment. The ability of the gut microbiota to metabolize
cannabinoids and influence their pharmacological activity could impact the anti-cancer
properties of cannabis in the gastrointestinal tract and systemically. Additionally, given the
influence of gut microbiota on cannabinoid receptor activation and the ECS, gut microbiota-
targeted interventions may offer a strategy to enhance the therapeutic effects of cannabi-
noids in cancer treatment. By modulating the gut microbiota through dietary interventions,
probiotics, or prebiotics, it might be possible to potentiate the antitumor effects of cannabi-
noids or mitigate potential side effects associated with chronic cannabis use. Furthermore,
the gut microbiota has been implicated in modulating the response to cancer immunothera-
pies [69,70]. As cannabinoids also exhibited immune-modulatory properties, gut microbiota
interactions with cannabinoids could potentially impact the response to cannabis-based
immunotherapies in cancer.

The gut microbiota has recently emerged as a crucial player in modulating the pharma-
cological effects of various therapeutic agents, including chemotherapeutic drugs [71,72].
By interacting with drugs and their metabolites, the gut microbiota can influence drug
bioavailability, metabolism, and efficacy [71–73]. Moreover, the gut microbial metabolites,
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such SCFAs, interact with the ECS and influence its regulation [68]. SCFAs have been
shown to modulate the expression and activity of cannabinoid receptors, affecting various
physiological processes in the gut, including inflammation and motility [74]. As inflam-
mation and gut dysmotility are implicated in cancer development and progression, the
ability of gut microbiota to produce SCFAs may play a role in modulating the anticancer
effects of cannabinoids. In particular, the gut microbiota may impact the anticancer ef-
fects of cannabis by affecting the bioactivation, metabolism, and local concentrations of
cannabinoids in the gastrointestinal tract.

3. Gut Microbiome and Cannabis Interactions

3.1. The ECS and Gut Microbiota

The ECS regulates various physiological functions in the gastrointestinal tract, such as
gut motility, secretion, and visceral sensation. Activation of CB1 receptors in the enteric
nervous system can inhibit neurotransmitter release, resulting in reduced gastrointestinal
motility and intestinal secretion (Figure 2) [75,76]. On the other hand, CB2 receptor activa-
tion in immune cells within the gut mucosa can influence the inflammatory response and
contribute to gut immune homeostasis [77].
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Interestingly, the gut microbiota has been shown to interact with the ECS, further high-
lighting the relationship between the gut microbiota and cannabis. Interestingly, germ-free
mice, which lack gut microbiota, displayed alterations in the expression of ECS components
in the gastrointestinal tract compared to conventionally raised mice [77]. These findings
suggested that gut microorganisms are essential for optimal ECS regulation in the gut.
Furthermore, the interaction between the ECS and the gut microbiota is bidirectional, as the
ECS can influence the gut microbiota composition and function. For example, activation of
CB1 receptors has been shown to affect the gut microbiota by altering the gut transit time
and promoting changes in gut motility [78]. Studies have also suggested that the ECS might
play a role in modulating gut barrier integrity and immune responses, which can influence
the gut microbiota [77,79]. Conversely, the gut microbiota can produce endocannabinoids
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and influence the endocannabinoid tone in the gut. For instance, commensal bacteria
have been found to produce endocannabinoid-like compounds, such as 2-arachidonoyl
glycerol (2-AG), which can activate cannabinoid receptors and modulate gut functions [80].
Moreover, the gut microbiota can guide the expression and activity of endocannabinoid-
degrading enzymes, thereby regulating endocannabinoid levels locally [16]. The crosstalk
between the ECS and gut microbiota has significant implications for gut health and over-
all physiology. Dysregulation of the ECS in the gut has been associated with various
gastrointestinal disorders, including inflammatory bowel disease (IBD), irritable bowel
syndrome (IBS), and colorectal cancer [81,82]. Additionally, alterations in the gut microbiota
composition have been linked to ECS dysfunction and associated gut pathologies [68,75,83].

Understanding the interactions between the ECS and gut microbiota is of growing
interest due to their potential implications for human health and disease. As the use of
cannabis-based products for medical purposes becomes more prevalent, it is crucial to
investigate how cannabis interacts with the gut microbiota and how these interactions
influence various physiological processes, including those relevant to cancer development
and treatment.

3.2. Impact of Cannabis Administration on Gut Microbiota Composition

Emerging evidence suggests that cannabis consumption can alter the gut microbiota
composition. Animal studies have demonstrated changes in the abundance of specific
bacterial taxa following cannabis exposure [13,84]. Moreover, clinical studies have shown
associations between cannabis use and shifts in the gut microbial community, particularly
in relation to the abundance of certain bacterial communities [13,85]. A recent study by
Al-Ghezi et al. (2019) reported that chronic THC administration in mice led to changes in
the gut microbiota, with an increase in the relative abundance of Akkermansia muciniphila, a
bacterium associated with improved gut barrier function and metabolic health. Conversely,
cannabis use has been linked to an increased abundance of Bacteroides species in the human
gut microbiota, which might be associated with gut inflammation and metabolic disor-
ders [85]. These findings suggest that cannabis consumption can influence gut microbiota
composition, potentially affecting gut health and various physiological processes regulated
by the gut microbiome.

3.3. Gut Microbiota-Mediated Metabolism of Cannabinoids

The gut microbiota can play a crucial role in the metabolism of cannabinoids, af-
fecting their bioavailability and pharmacological activity. Several studies have identified
microbial enzymes capable of metabolizing cannabinoids, leading to the formation of
active or inactive metabolites [86]. For instance, the gut microbiota possesses the enzyme
β-glucuronidase, which can deconjugate glucuronide metabolites of THC, thus releasing
the active form of THC back into circulation [39]. The gut microbiota can also influence
systemic exposure to cannabinoids by altering the enterohepatic circulation [87]. Bile acids,
metabolites produced by the liver and modified by the gut microbiota, can form com-
plexes with cannabinoids, leading to their reabsorption and prolonged retention within the
body [11]. The capacity of gut microbiota to metabolize cannabinoids can significantly im-
pact their bioavailability and therapeutic effects, further highlighting the crosstalk between
the gut microbiota and cannabis in modulating physiological responses.

3.4. Influence of Gut Microbiota on Cannabis Pharmacology

The complex interactions between cannabinoids and gut microbes have the potential
to impact the therapeutic efficacy and safety of cannabis-based treatments for various
medical conditions, including cancer.

One of the key mechanisms by which the gut microbiota influences cannabis phar-
macology is the metabolism of cannabinoids. Several studies have demonstrated that
gut bacteria possess the enzymatic machinery necessary to metabolize cannabinoids into
different compounds, which can significantly alter their pharmacological activity [11].
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For example, ∆THC, the primary psychoactive compound in cannabis, is metabolized
by gut bacteria into 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THC-
COOH) [88]. These metabolites exhibit distinct pharmacological properties compared to
parent THC, with 11-OH-THC reported to be more potent than THC, while THC-COOH is
considered inactive but is often used as a plasma marker of cannabis consumption in drug
tests [51,88]. Additionally, certain gut bacteria can metabolize CBD into 7-hydroxy-CBD, a
compound with potential anti-inflammatory properties [89].

3.5. Modulation of Cannabinoid Receptor Activation

Alterations in the gut microbiota have been associated with changes in endocannabi-
noid levels and expression of cannabinoid receptors in the gut and the brain, potentially
impacting various physiological processes [83,90]. Influencing cannabinoid receptor ac-
tivation and, in turn, affecting the overall pharmacological response to cannabinoids is
another key role of gut microbiota. Cannabinoids primarily exert their effects by binding to
and activating cannabinoid receptors, particularly CB1 and CB2 (Figure 3) [55]. Preclinical
studies have shown that certain gut bacteria-derived metabolites, such as secondary bile
acids, can activate cannabinoid receptors (Figure 3) [91]. These secondary bile acids are
produced through the gut microbiota-mediated deconjugation of primary bile acids, which
are synthesized in the liver and secreted into the intestine [91].
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3.6. Gut Microbiota and Cannabinoid-Induced Gut Motility

Cannabinoids have well-known effects on gut motility, influencing gastrointestinal
transit and smooth muscle contractions [76]. The gut microbiota can modulate these effects
by interacting with the ECS and affecting the production of certain neurotransmitters and
neuromodulators involved in gut motility regulation. For instance, gut bacteria can produce
neurotransmitters like serotonin, dopamine, and gamma-aminobutyric acid (GABA) [92].
These neurotransmitters can interact with cannabinoid receptors and modulate the effects
of cannabinoids on gut motility and gastrointestinal functions [92].

Recent investigations have revealed a growing connection between gut microbiota
and conditions related to metabolism and the nervous system. Observational studies
have indicated that certain dietary interventions involving specific fatty acids may lead to
increased levels of endocannabinoids (eCBs). These changes in eCBs have been linked to
variations in microbial families such as Peptostreptococcaceae, Veillonellaceae, and Akkerman-
siaceae [14]. Additionally, the use of cannabis has been associated with alterations in eCB
levels, promoting mucosal healing in ulcerative colitis patients and enhancing their overall
quality of life [14]. The manipulation of the ECS through cannabinoids has also shown
promise in immune suppression. For instance, recent studies have demonstrated that endo-
cannabinoid anandamide (AEA) can counteract harmful microbiota disruptions caused
by severe acute respiratory distress syndrome (ARDS) in mice [14]. AEA treatment was
associated with increased levels of beneficial bacteria producing SCFAs, such as butyrate,
which play a crucial role in gut health [14]. This treatment also reduced inflammation of
lung and gut-associated lymph nodes, bolstering epithelial barrier integrity. Moreover, with
cannabinoid treatment, pathogenic bacteria were mitigated, and the presence of beneficial
bacteria was enhanced [14].

Similar investigations have highlighted the impact of cannabinoids on diseases like
colitis. In a murine colitis model, activating cannabinoid receptors by THC improved
the integrity of the colonic barrier and enhanced the production of protective molecules.
While alterations in the gut microbiota were observed, they were not directly linked to
the positive effects of THC. Another study demonstrated the synergistic effects of fish
oil and CBD in treating colitis in mice. This combination therapy reduced inflammation
markers and improved intestinal permeability, suggesting a potential avenue for managing
gastrointestinal diseases.

Synthetic cannabinoids have been extensively studied for their anti-inflammatory
properties and potential to influence the gut microbiota. For instance, the CB2R agonist
JWH133 demonstrated benefits in cirrhotic rats by reducing bacterial overgrowth and
promoting intestinal integrity [14]. Conversely, blocking the CB1 receptor with the anti-
obesity drug Rimonabant led to reductions in obesity, inflammatory cytokines, and certain
gut bacterial strains [14]. Clinical investigations have also shown positive outcomes with
synthetic cannabinoids, such as nabilone, in alleviating symptoms like post-traumatic stress
disorder and diarrhoea [93].

In summary, ongoing research emphasizes the interactions between cannabinoids, gut
microbiota, and various health conditions. Findings suggest that cannabinoids, whether
natural or synthetic, hold promise in modulating gut microbiota, influencing inflammation,
and improving conditions related to metabolism and the nervous system. These cannabis-
induced changes in the gut microbiota may, in turn, influence the effects of cannabinoids
on gut motility and other gut-related functions.

4. Gut Microbiome, Cannabis, and Cancer: Potential Interplay

4.1. Gut Microbiome-Mediated Modulation of Immune Responses

The gut microbiome profoundly impacts the development and function of the im-
mune system, including immune cell development, shaping the composition of immune
cell populations, and modulating the production of inflammatory mediators [37]. Con-
sequently, alterations in the gut microbiome composition have been linked to various
immune-related diseases, including cancer [69]. Furthermore, the gut microbiota can shape
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systemic immune responses and influence immune cell trafficking to distant sites, including
tumours [70]. Alterations in the gut microbiota have been associated with changes in the tu-
mour microenvironment and the response to cancer immunotherapy [69,70]. Hence, the gut
microbiota may modulate the response to cannabinoids in cancer therapy by influencing
the immune microenvironment of tumours.

4.2. The Bidirectional Relationship: Cannabis, Gut Microbiota, and Cancer

The interaction between cannabis, the gut microbiome, and cancer is likely bidirec-
tional, with each component influencing the others in a complex and dynamic manner
(Figure 4). Cannabis consumption may impact the gut microbiota composition and function
by directly affecting gut motility, secretions, and immune responses. In turn, the gut micro-
biota can metabolize cannabinoids, affect their pharmacological activity, and modulate the
immune response to cannabinoids in the gastrointestinal tract and systemically. Dysreg-
ulation of the gut microbiota has been associated with gastrointestinal cancers and other
malignancies, highlighting the importance of understanding how cannabis interactions
with the gut microbiota might impact cancer development and progression. However,
much remains to be elucidated regarding the specific mechanisms and clinical implications
of the interactions between cannabis, the gut microbiota, and cancer. Further research is
needed to unravel the complexity of these interactions and identify potential therapeutic
strategies to harness the gut microbiota–cannabis axis for cancer management.
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4.3. Modulation of the Gut Microbiota to Potentially Enhance the Effects of Cannabis in
Cancer Therapy

Cancer Pain and Chemotherapy Side Effects Management

Johnson et al. (2010) examined the use of THC: CBD extract in people with cancer who
experienced intractable pain. The most common side effects reported were dizziness and
dry mouth, and the authors noted that these side effects were generally mild to moderate in
severity [56]. Portenoy et al. (2012) also investigated a placebo-controlled trial that assessed
the use of a novel cannabinoid formulation called nabiximols (Sativex) in people with
cancer experiencing poorly controlled chronic pain. The side effects included dizziness,
fatigue, and dry mouth, with no significant differences in side effects between the treatment
and placebo groups [94]. Another observational study by Bar-Sela et al. (2013) examined the
use of medicinal cannabis in people with cancer receiving supportive or palliative care, and
the reported side effects included dizziness, dry mouth, and psychoactive effects with most
being mild to moderate and did not lead to treatment discontinuation [95]. Another report
by the National Academies of Sciences, Engineering, and Medicine acknowledged potential
side effects such as dizziness, dry mouth, and cognitive impairment, based on the current
evidence of cannabis and cannabinoids use for various medical conditions, including
cancer-related pain, emphasizing the importance of further research to understand these
side effects [96]. These studies collectively suggested that while cannabis and its derivatives
may benefit from managing cancer-related pain, they can be associated with side effects
such as dizziness, dry mouth, and fatigue.

Strategies to modulate the gut microbiota, such as prebiotics, probiotics, and dietary
interventions, could potentially reduce the side effects and enhance the therapeutic effects
of cannabis in cancer treatment. Preclinical studies have shown that certain probiotics
and dietary components can influence cannabinoid receptor expression, endocannabinoid
levels, and gut barrier integrity [83,97]. Therefore, combining cannabis-based treatments
with gut microbiome-targeted interventions may provide synergistic effects, improving
the therapeutic properties of cannabinoids. Moreover, gut microbiota modulation could
be explored to reduce potential adverse effects of cannabis use, such as gastrointestinal
discomfort and altered gut motility. By promoting gut health and intestinal homeostasis,
interventions targeting the gut microbiota could potentially improve the tolerability and
overall safety of cannabis-based therapies.

5. Safety Considerations and Clinical Trials

Cannabis-based therapies have emerged as a promising avenue for cancer treatment, pri-
marily due to their potential to alleviate cancer symptoms and inhibit tumour growth [98,99].
However, alongside these promises, it is imperative to rigorously assess the safety considera-
tions associated with these therapies. The safety considerations of cannabis-based therapies are
multifaceted. Upholding ethical principles, such as patient autonomy, informed consent, and
privacy, is paramount in pursuing cannabis-based therapies for cancer treatment.

One crucial aspect that warrants in-depth investigation is the role of the gut microbiota,
as it can metabolize cannabinoids into active and potentially toxic compounds [100], which
could influence the safety and efficacy of cannabis-based therapies. As aforementioned,
the gut microbiota can convert THC into its more psychoactive form, 11-hydroxy-THC,
which may lead to unwanted psychotropic effects and safety concerns [9]. In clinical
trials exploring cannabis-based therapies for cancer treatment, understanding how gut
microbiota composition influences cannabinoid metabolism and toxicity is paramount [101].

Personalized Medicine and Gut Microbiota Profiling

The gut microbiota exhibits considerable interindividual variation, influenced by
genetics, diet, lifestyle, and exposure to various environmental factors [102]. Individual
gut microbiome variations could result in disparate treatment responses and safety profiles
among patients. This variability in the gut microbiota may result in diverse responses to
cannabis-based treatments in people with cancer. Therefore, it is crucial to consider the
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gut microbiota as a potential modifier of treatment outcomes [9]. Future clinical trials in
this field could benefit from incorporating gut microbiota profiling as part of their study
design. By characterizing the gut microbiome of participants before and during treatment,
researchers can gain insights into how specific microbiota profiles may correlate with
treatment response and safety. This personalized approach may facilitate the identification
of patient subgroups more likely to respond positively to cannabis-based therapies and
help assess how gut microbiota alterations might influence treatment outcomes.

The relationship between the gut microbiota and the effects of cannabis has been a
subject of growing research interest, with potential implications for individual variations in
cannabinoid metabolism, immune response, and gut barrier integrity. Here are some in-
stances where this relationship has been explored. A study found that THC administration
enriched short-chain fatty acids (SCFAs), specifically propionic acid, which attenuated the
inflammatory response and protected mice from fatality [14]. Also, there is a hypothesis
that the crosstalk between the microbiota and the intestinal endocannabinoid system plays
a prominent role in stress-induced changes in metabolism [103]. A systematic review and
meta-analysis revealed associations between cannabis usage and alterations in the human
microbiome, which must be considered in future research on the therapeutic effects of
cannabis on patients [104]. Cannabis extracts increased microbial diversity and richness
in a mouse model of metabolic disease while promoting the enrichment of microbial taxa
associated with health [105].

Moreover, research has shown that cannabinoids modulate the microbiota-gut-brain
axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently
elevating endocannabinoid levels [106]. Researchers are exploring how cannabis smoking
alters the bacterial communities in the mouth and its potential impacts on the brain [107].
These examples demonstrate the potential impact of the gut microbiota on the effects of
cannabis and the need for further research to understand how this relationship could guide
the selection of appropriate cannabis-based formulations, dosages, and treatment regimens
tailored to individual gut microbiota composition and characteristics.

By profiling the gut microbiota, healthcare professionals may also gain insights into in-
dividual variations in cannabinoid metabolism, immune response, and gut barrier integrity.
This information could guide the selection of appropriate cannabis-based formulations,
dosages, and treatment regimens tailored to everyone’s unique gut microbiota composition
and characteristics.

6. Conclusions and Future Directions

In conclusion, the emerging field of research on the gut microbiome–cannabis axis
presents a promising avenue for advancing cancer treatment strategies. To fully unlock
the therapeutic potential of this axis, future investigations should prioritise several key
research directions. This includes understanding how specific microbial species metabolise
cannabinoids, influencing their bioavailability and therapeutic actions. Additionally, ex-
ploring the interplay between the gut microbiota, the immune system, and cannabis can
unravel how these interactions impact the immune response against cancer. Investigating
the role of the gut microbiota in maintaining gut barrier integrity and its influence on the
effects of cannabis is also crucial for optimising treatment efficacy.

Despite significant advancement in the field, limitations and unanswered questions
persist. The complexity and variability of the gut microbiota make it challenging to establish
universal guidelines for cannabis-based cancer treatments. Large-scale studies are needed
to identify specific gut microbiome signatures associated with optimal treatment responses,
enabling the selection of patients more likely to benefit from cannabis-based therapies
and optimising treatment outcomes. Large-scale longitudinal studies and clinical trials
incorporating gut microbiome profiling are essential to elucidate the complex mechanisms
and clinical implications of the gut microbiome-cannabis axis in cancer therapy. Gut mi-
crobiome profiling offers the potential to identify patient-specific microbiome signatures
that influence treatment responses to cannabis-based therapies, optimising outcomes and
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minimising adverse effects. Specific aspects, such as the precise taxonomic composition
of bacterial species involved, the molecular mechanisms at play, and the clinical implica-
tions for cancer prevention and treatment, also warrant further empirical investigation.
Additionally, the long-term safety and efficacy of gut microbiome-targeted interventions in
combination with cannabis-based therapies require thorough investigation. These studies
are necessary for developing personalised therapeutic approaches while upholding ethi-
cal considerations, especially related to the safety and side effects of cannabis in people
with cancer.

Advancing our understanding of the gut microbiome–cannabis axis for cancer treat-
ment necessitates multidisciplinary collaborations among researchers and healthcare pro-
fessionals, including microbiologists, oncologists, pharmacologists, and immunologists.
This collaborative approach will ensure a comprehensive understanding of the underlying
mechanisms and expedite the translation of research findings into clinical applications.

In summary, the crosstalk between the gut microbiota and cannabis in relation to
cancer represents a promising and emerging area of cancer therapy. While this field is still
in its infancy, evidence from preclinical studies suggests that the gut microbiota plays a
crucial role in modulating the pharmacological effects of cannabinoids, influencing their
metabolism, immune-modulatory properties, and interaction with the gut barrier. More-
over, the gut microbiota and its metabolites have been implicated in cancer development
and progression, indicating its potential as a target for therapeutic interventions in combi-
nation with cannabis-based therapies. Combining cannabis-based therapies with strategies
to modulate the gut microbiome, such as probiotics, prebiotics, or dietary interventions,
holds promise for enhancing the anticancer properties of cannabinoids. While challenges
and limitations exist, addressing these research directions will contribute to realising the
full potential of the gut microbiota–cannabis–cancer axis.
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Abbreviations

11-OH-THC 11-hydroxy-THC

2-AG 2-arachidonoyl glycerol

AEA Anandamide

ARDS Acute respiratory distress syndrome

CB1 Cannabinoid receptor 1

CB2 Cannabinoid receptor 2

CBD Cannabidiol

ECS Endocannabinoid system

eCBs Endocannabinoids

GABA Gamma-aminobutyric acid

IBD Inflammatory bowel disease

IBS Irritable bowel syndrome

MMPs Matrix metalloproteinases

VEGF Vascular endothelial growth factor

VIN Vinorelbine

SCFAs Short-chain fatty acids

THC Delta-9-tetrahydrocannabinol

THC-COOH 11-Nor-9-carboxy-THC

TMAO Trimethylamine N-oxide
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