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Abstract: Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial

effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound

with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these

properties, the interest of the scientific community for it has grown. Indeed, CBD is a great

candidate for the management of neurological diseases. The purpose of our review is to summarize

the in vitro and in vivo studies published in the last 15 years that describe the biochemical

and molecular mechanisms underlying the effects of CBD and its therapeutic application in

neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors

(adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55),

one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor

(peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also

due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a

valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and

Parkinson’s disease.
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1. Introduction

Neurological diseases are complex conditions affecting millions of people around the world [1].

These disorders can have different etiologies; indeed, they can be caused by genetic or environmental

factors [2–5]. Although for some of these pathologies treatment that can delay or control the clinical

symptoms is available, they remain incurable diseases.

Phytocannabinoids, such as CBD, represent a new class of compounds characterized by beneficial

effects in various neurodegenerative and psychiatric diseases [6,7].

CBD is extracted from Cannabis sativa, and, together with the psychoactive ∆
9-tetrahydro-cannabinol

(∆9-THC), they represent the main neuroactive components of the plant. Unlike ∆
9-THC that induces

psychotropic effects, CBD is the main non-psychotropic compound present in the plant [8,9].

CBD shows a relatively low toxicity and dependence profile [10]. For these reasons, the role of CBD

as adjuvant therapy is being evaluated in those conditions in which the available treatments are not

satisfying. Furthermore, CBD has a broad spectrum of therapeutic properties, such as anxiolytic [7,11],

neuroprotective [7,12–15], antidepressant [16], anti-inflammatory [17–19] and immunomodulating

activities [20,21]. The neuroprotective effects of CBD are due to its antioxidant and anti-inflammatory

activities and the modulation of a large number of brain biological targets, such as receptors and

channels, involved in the development and maintenance of neurodegenerative diseases [22]. CBD can

Molecules 2020, 25, 5186; doi:10.3390/molecules25215186 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-3846-0785
http://www.mdpi.com/1420-3049/25/21/5186?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25215186
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 5186 2 of 29

exert its antioxidant action directly by the modulation of oxidative stress or indirectly through molecules

targets associated with the redox system such as nuclear factor erythroid 2-related factor 2 (Nrf2),

implicated in the transcription of genes that encodes for antioxidant proteins, such as superoxide

dismutase (SOD) and glutathione (GSH) peroxidase [23,24]. CBD can increase the activity of GSH

peroxidase and reductase, favoring the reduction of malondialdehyde and thus preventing oxidative

stress [25]. Moreover, thanks to its ability to reduce reactive oxygen species (ROS), CBD maintains

the correct GSH levels, necessary for the antioxidant activity of vitamins A, C and E [26]. CBD is a

regulator of the expression of nitrotyrosine and inducible nitric oxide synthase (iNOS), thus promoting

the reduction of the production of ROS [27]. Moreover, CBD exerts its anti-inflammatory action,

modulating the release of proinflammatory cytokines such as interleukin-6 (IL-6) and interleukin 1-β

(IL-1β) and interacting with transcription factors such as tumor necrosis factor α (TNF-α), nuclear

factor κB (NF-κB) or peroxisome proliferator-activated receptor γ (PPARγ) [28–30]. CBD also performs

its anti-inflammatory action by regulating the transient receptor potential (TRP) channels such as

transient receptor potential vanilloid (TRPV) Type 1 and 2, a non-selective cationic channel whose

activation allows the entry of Ca2+ [31]. Indeed, in the neuroinflammatory conditions, an increase

of the density and sensitivity of TRPV1 was demonstrated. Conversely, the binding of the CBD

with TRPV1 leads to the desensitization of these channel receptors and a consequent reduction of

neuroinflammation, thus explaining the neuroprotective properties of CBD [32].

Therefore, in recent years, the scientific community has shown interest in this compound due

to its neuroprotective effects in several neurological disorders, including Parkinson’s disease [33,34],

Alzheimer’s diseases [35–37] and epilepsy [38]. Additionally, CBD shows other actions such as

antidepressant, antipsychotic, antiepileptic and analgesic effects, as highlighted in preclinical studies

and human clinical trials [7,39–41].

The purpose of this review is to describe the molecular mechanisms associated with the efficacy of

CBD in neurological diseases. In the present review, the experimental studies highlighting the CBD’s

mechanisms of action in neurological disorders are summarized.

2. Methodology

In this review, the articles published from 2004 to 2020 are considered. Specifically, the bibliography

research in PubMed was performed using the following keywords: “cannabidiol”, “neurological

disease”, “adenosine receptors”, “serotonin receptors”, “transient receptor potential”, “TRPV receptors”,

“GPR55 receptors”, “peroxisome proliferator-activated receptor-γ”, “PPARγ receptors” and “GABA

receptors”. In this way, 67 articles were found, as shown in the Prisma flow diagram (Figure 1).

Articles that evaluate the biochemical and molecular mechanisms underlying the effects of CBD and

its therapeutic application in neurological diseases are considered.
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Figure 1. Prisma flow diagram illustrating the selection methodology of the preclinical studies used

for the writing of the review. Duplicate articles were excluded from the total of the studies recorded.

Instead, articles that evaluate the biochemical and molecular mechanisms underlying the effects of

CBD and its therapeutic application in neurological diseases are considered (The PRISMA Statement is

published in [42]).

3. Chemical Properties of Cannabidiol

CBD was first isolated in 1940 from Mexican marijuana by Roger Adams and from Indian charas by

Alexander Todd [43,44]. However, its crystalline structure was determined in 1977 (Jones et al. 1977) [45].

CBD 2-[(1R,6R)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol is a terpenophenol

containing 21 carbon atoms, with the formula C21H30O2. CBD is a cyclohexene which is substituted

in position 1 by a methyl group, by a 2,6-dihydroxy-4-pentylphenyl group at position 3 and with a

prop-1-en-2-yl group at position 4 [46]. The aromatic ring and the terpene ring are almost perpendicular

to each other. In the chemical nomenclature, its chemical numbering is determined by the terpene ring

(Figure 2).

The reactivity of CBD is mainly due to the methyl group in position C-1 of the cyclohexane ring,

to the hydroxyl groups present in the aromatic ring in position C-2’ and C-6’ and to the pentyl chain

present in position C-4’. The hydroxyl groups are also capable of binding threonine, tyrosine and

glutamic acid [47]. Moreover, CBD, thanks to its hydroxyl groups in the aromatic ring, can exert an

antioxidant action by inactivating the free radicals [48].
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Figure 2. Chemical Structure and numbering system of Cannabidiol (CBD).

4. Cannabidiol Mechanism of Action

Unlike other cannabinoids, CBD has a poor affinity for cannabinoid receptor type 1 (CB1) and

cannabinoid receptor type 2 (CB2); however, it acts as a non-competitive negative allosteric modulator

of CB1 [49]. It has recently been shown that CBD is a CB1R-negative allosteric modulator of ∆
9-THC

and the 2-arachidonoyl-glycerol (2-AG), this evidence may explain some of the in vivo effects of this

nonpsychoactive phycompound [50]. Furthermore, CBD modulates the tone of endocannabinoids by

inhibiting cellular uptake of the endocannabinoids arachidonoylethanolamide (AEA) [51]. AEA, CB1,

CB2 and 2-AG constitute the endocannabinoid system (ECS) responsible for the synthesis and

degradation of endocannabinoids [52]. Therefore, CBD can lead to increased levels of AEA, thus

interacting with CB receptors [53]. AEA is involved in different biological processes such as mood

regulation, pain sensation and appetite. The synthesis of AEA and 2-AG is regulated by increased of

intracellular calcium (Ca2+). Moreover, AEA and 2-AG are, respectively, metabolized by fatty acid

amide hydrolase (FAAH) and monoglyceride lipase [54]. The increase of intracellular Ca2+ induces

the production and release into the synaptic space of AEA and 2-AG that acts as retrograde synaptic

messengers [55,56]. Indeed, these endocannabinoids acting on CB1 at a presynaptic level block the

release by neuronal terminals of neurotransmitters such as γ-aminobutyric acid (GABA), dopamine,

glutamate, serotonin (5-HT), norepinephrine and acetylcholine [57,58].

However, it was shown that CBD has more affinity for 5-HT receptors, non-endocannabinoid G

protein-coupled receptors (GPCRs) and other targets such as enzymes and ion channels [53]. Indeed,

some anti-inflammatory and immunosuppressive effects of CBD may be partly mediated by 5-HT and

adenosine receptors (ARs) which are not considered part of the ECS. CBD acts as a 5-HT1A agonist,

as a partial agonist of 5-HT2A and as a non-competitive antagonist of 5-HT3A [59–61]. Furthermore,

CBD is capable of activating the ARs [62]. Moreover, CBD acts as a GPR55 antagonist and as an agonist

of TRPV1 and TRPV2 [63]. It has already been reported that CBD exerts its anti-inflammatory and

neuroprotective effects also due to its ability to activate PPARγ [17,64]. Furthermore, it is a positive

allosteric modulator of GABAA receptors, thereby exerting its anticonvulsant, analgesic and anxiolytic

properties [65]. However, despite all this evidence, the molecular mechanisms underlying the effects

of CBD remain complex.

5. Pharmacokinetic Properties of Cannabidiol

The pharmacokinetics and observed effects of CBD are related to the formulation and route of

administration [66].

CBD can be administered orally, inhaled and vaporized [67]. CBD administered by inhalation

is effectively absorbed into the lungs from the circulating blood, showing similar pharmacokinetics

to the intravenous route [68]. Administered by inhalation, CBD reaches peak plasma concentrations

in 5–10 min and shows bioavailability of 31%. However, the need for specialized equipment for

these routes of administration limits the development of this mode of delivery [69]. On the contrary,

oral administration shows a variable pharmacokinetic profile, probably due to the poor solubility of
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CBD in water [70]. Furthermore, the maximum plasma concentrations are lower than those reached

when the drug is administered by inhalation. Indeed, CBD in human showed an oral bioavailability of

6% [71]. The administration of CBD by the oro-mucosal and sublingual route shows a less variable

pharmacokinetic profile than the oral administration. Instead, when CBD is administered intravenously,

it quickly passes the blood–brain barrier (BBB) to distribute in the brain, adipose tissue and other

organs [68]. Moreover, thanks to its liposolubility, CDB forms aggregates which can be released slowly

into adipose tissue [72].

CBD is metabolized in the liver by cytochrome P450 enzymes (CYPs) such as CYP2C19 and CYP3A4,

CYP1A1, CYP1A2, CYP2C9 and CYP2D6 and is converted to 7-hydroxycannabidiol (7-OH-CBD) [73].

After hydroxylation, CBD is further metabolized in the liver and subsequently excreted, mainly in

feces and urine. CBD exhibits a half-life of 18–32 h and a clearance of 57.6–93.6 L/h [69].

CBD is well tolerated and shows a good safety profile at therapeutic dosages. However, some

studies have shown that CBD possesses strong inhibitory activity against CYP2C, CYP2D6 and CYP3A

isoforms [74].

6. Molecular Targets of CBD for Application in Neurodegenerative Diseases

The neuroprotective effects of CBD based on its anti-inflammatory and antioxidant action are

directed to the modulation of receptors and channels involved in neurodegenerative diseases [22].

It is known that CBD interacts with many non-endocannabinoid signaling systems such as G protein

coupled-receptors, TRPV1 and PPARγ [75]. Additionally, CBD therapeutic potential possibly derives

from its GABAergic modulation [65].

6.1. GPCRs

6.1.1. Adenosine Receptors

ARs (A1R, A2AR, A2BR and A3R) are GPCRs stimulated by endogenous adenosine, involved in

several physiological and pathological processes [76]. The stimulation of A1R and A3R by adenosine

leads to the activation inhibiting G (Gi/o) proteins with the consequent inhibition of adenylate cyclase

and intracellular reduction of cyclic adenosine monophosphate (cAMP). Instead, A2AR and A2BR

promote the G protein activation and the subsequent increase of cAMP [77]. ARs activation involves

the modulation of second messengers and additional signaling mechanisms such as phospholipase

C; the protein kinase C dependent on Ca2+ involved in cell communication; phosphoinositide

3-kinases/protein kinase B (PI3K/Akt) signaling involved in cell proliferation, growth and differentiation;

and the activation of ion channels and regulation of Ca2+ [76,78]. ARs are located in immune cells,

blood vessels, astrocytes, microglia, corpus striatum and spinal cord [79]. ARs can affect both in

the central nervous system (CNS) and peripheral tissues, thus could represent a useful tool for the

development of new neuroprotective strategies [79,80].

Although CBD exerts its beneficial action through several signaling pathways, its anti-inflammatory

effects seem to involve A2AR [81]. The anti-inflammatory effect of CBD can be directly mediated

by A2AR whose activation induces the regulation of the immune response, as well as a reduction of

proinflammatory cytokines [82,83]. CBD can improve the adenosine signaling, leading to an increase

of extracellular adenosine and a consequent reduction of the neuroinflammation [81]. Mecha et al.

demonstrated the anti-inflammatory effects of CBD, through A2AR activation, in a viral model of

multiple sclerosis. They showed in mice infected with Theiler’s murine encephalomyelitis virus (TMEV)

that CBD (5 mg/kg), administered via intraperitoneal (i.p.) daily, for seven days, led to a reduction

of leukocyte migration in the blood and of the inflammatory response. Moreover, CBD treatment

induces the downregulation of the levels of adhesion expression of vascular cells molecule-1 (VCAM-1),

chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Likewise, CBD reduced IL-1β and microglia

activation, thus demonstrating its immunosuppressive and neuroprotective action. In addition, CBD has

also improved motor deficits, especially in the chronic phase of the disease. To confirm the action of
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CBD on A2AR the animals were treated with ZM241385 (5 mg/kg), a selective A2AR antagonist, at the

time of TMEV infection and 30 min before CBD treatment. ZM241385, especially in the early stages,

attenuated some of the anti-inflammatory effects of CBD, such as the inhibition of the expression of

VCAM-1, the infiltration of immune cells and the reduction of immunoreactivity. Moreover, it was

also demonstrated that ZM241385 (5 µM) with a dose-dependent mechanism, antagonizes A2AR

blocking completely the inhibitory action of CBD on the release of VCAM-1. Conversely, the single

administration of ZM241385 did not affect TMEV mice. Therefore, the results suggest that the A2AR

mediated anti-inflammatory effects of CBD could be useful for the management of inflammatory

diseases such as multiple sclerosis [18].

The involvement of A2AR in neuroprotective effects of CBD was also demonstrated in vitro on

hypoxic-ischemic immature brain of mice. In this study, Castillo et al. showed the effects of CBD

in forebrain sections of C57BL6 mice incubated in absence of oxygen and glucose and treated for

15 min with CBD or vehicle. CBD treatment (100 µM) has significantly reduced acute brain damage

and apoptosis, evaluated through the decrease in the efflux of lactate dehydrogenase. In the same

way, CBD led to a reduction of glutamate and increase of caspase-9. CBD has also reduced the

neuroinflammation leading to the reduction of IL-6, TNF-α, cyclooxygenase-2 (COX-2) and iNOS.

Moreover, it was shown that the administration of SCH58261, an A2AR antagonist, or AM630, a CB2

antagonist, abolished the neuroprotective effects of CBD. The possible affinity of CBD to CB2 receptors is

prompted by the effect of AM630 on CBD neuroprotection. Therefore, the study demonstrated how the

neuroprotective effects of CBD can be mediated by A2AR and CB2 receptors [28]. The neuroprotective

effects of CBD were also demonstrated by Martin-Moreno et al. in vitro and in vivo model of

Alzheimer’s disease. CBD inhibited ATP-induced intracellular Ca2+ increase in cultured N13 cells

and primary microglial cells. The use of ZM241385, an A2A receptor antagonist, reversed the effects

of CBD on intracellular Ca2+ in N13 microglial cells and primary rat microglial. This result confirms

the implication of A2AR in the action of CBD. In vivo, CBD at a dose of 20 mg/kg was able to prevent

cognitive impairment induced by amyloid-β (Aβ). Indeed, after i.p. administration for three weeks,

CBD reduced the expression of the gene encoding for IL-6, a proinflammatory cytokine. Therefore,

in light of these results, CBD, interacting with A2AR, could be a useful approach for Alzheimer’s

disease [84].

Instead, Magen et al. evaluated the A2AR-mediated therapeutic effects of CBD in the experimental

model of hepatic encephalopathy induced by bile duct ligation. After four weeks of treatment,

CBD (5 mg/kg), administrated i.p. daily, induced a reduction of expression of the TNF-α-receptor 1

gene in the hippocampus. Conversely, increased the expression of the brain-derived neurotrophic

factor (BDNF) gene. CBD exerts these effects through an indirect modulation of the A2ARs. Indeed,

the use of its antagonist ZM241385 (1 mg/kg) reversed the effects of CBD, confirming the involvement

of the A2ARs. In this way, the chronic treatment with CBD, through the indirect activation of the A2ARs,

improved the cognitive and motor function of the rats with hepatic encephalopathy. As demonstrated

by these studies, CBD, probably inhibiting the reuptake of adenosine, exerts an indirect modulation of

ARs [82].

In conclusion, the results of these studies show that CBD, through A2AR activation, exerts

anti-inflammatory effects in models of multiple sclerosis, hypoxic-ischemic damage, Alzheimer’s

disease and hepatic encephalopathy (Table 1).
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Table 1. Neuroprotective effects of CBD in different neurological diseases through the activation of the A2ARs.

In Vitro and in Vivo
Models

CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

Female SJL/J mice 5 mg/kg
Once-daily during Days

1–7 post-infection

CBD attenuated the activation of microglia downregulating the
expression of VCAM-1, CCL2 and CCL5 and the proinflammatory

cytokine IL-1β. Moreover, CBD improved motor deficits in the
chronic phase of the disease

multiple
sclerosis

[18]

Newborn C57BL6 mice 0.1–1000 µM 15 min. pre-incubation
CBD reduced acute brain damage and apoptosis. Moreover,

it induced a reduction concentration of glutamate and IL-6 and
decreased the expression of TNF-α, COX-2 and iNOS.

hypoxic-ischemic
brain damage

[28]

Primary Rat Microglial
and N13 Microglial

Cells and C57Bl/6 mice
20 mg/kg

Once-daily during the
first week, then

3 days/week for 2 weeks

CBD inhibited ATP-induced intracellular Ca2 + increase in cultured
N13 and primary microglial cells and A2A receptors may be involved

in this mechanism. In vivo, CBD reduced the gene expression of
proinflammatory cytokine IL-6 and prevented cognitive impairment

induced by Aβ.

Alzheimer’s
disease

[84]

Female Sabra mice 5 mg/kg Every day for 4 weeks

CBD reduced the expression of the TNF-α-receptor 1 gene in the
hippocampus. Conversely, enhanced the expression of the BDNF
gene. Moreover, CBD, through the indirect activation of the A2AR,

improved the cognitive and motor function of the rats with
Hepatic Encephalopathy.

hepatic
encephalopathy

[82]

CBD, cannabidiol; VCAM-1, vascular cell adhesion molecule-1; CCL-2, chemokine ligand 2; CCL-5, chemokine ligand 5; IL-6, interleukin-6; TNF-α, tumor necrosis factor α; COX-2,
cyclooxygenase-2; iNOS, inducible nitric oxide synthase; A2AR, adenosine 2A receptors; CB2, cannabinoid receptors type 2; Aβ, β-amyloid; BDNF, brain-derived neurotrophic factor.
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6.1.2. 5-HT Receptors

5-HT receptors are activated by serotonin and involved in the release of neurotransmitters and

hormones, thus regulating many of the processes that occur in the nervous system. The family of

receptors 5-HT1 is coupled to Gi/0 proteins and to adenylate cyclase which leads to the production of

cAMP. In particular, the 5-HT1A receptor inhibits the Ca2+ channel and activates a ligand-dependent

potassium (K+) channel [85]. 5-HT1A receptors are associated to GPCR and they modulate

neurotransmission through K+ and Ca2+ channels. Moreover, the 5-HT1 receptors were classified into

five subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F), which are located in different areas of the

brain at pre- and post-synaptic level [86]. It was demonstrated that the main neuroprotective effects of

CBD are related to the 5-HT1A receptor. Russo et al. demonstrated that CBD while showing a low-affinity

agonism towards the 5-HT1A receptor could enhance 5-HT1A-mediated neurotransmission [59].

Mishima et al. explored the 5-HT1A receptors-mediate neuroprotective effects of CBD, in mice

with middle cerebral artery (MCA) occlusion. Mice received 3 or 10 mg/kg of CBD immediately before

and 3 h after occlusion. CBD, at a dose of 3 mg/kg, significantly decreased the infarct volume induced

by MCA occlusion. However, treatment with CBD (3 mg/kg) plus WAY100135 (10 mg/kg; a 5-HT1A

antagonist) inhibited the effects of CBD. This data suggested the involvement, at least in part, of 5-HT1A

receptors in the neuroprotective effects of CBD against cerebral ischemia [87].

Gomes et al. evaluated the beneficial effects of CBD, through the facilitation of the 5-HT1A

receptors, in motor-related striatal disorders, such as Parkinson’s disease. For the study, catalepsy was

induced in mice, using pharmacological mechanisms, in order to test the motor function disorders.

Thirty minutes before receiving the drugs that induce catalepsy, mice were treated with CBD 5, 15, 30

or 60 mg/kg (i.p.). The pretreatment with CBD attenuated the cataleptic effects, in a dose-dependent

manner. To explain the mechanism of action by which this phytocannabinoid exerts its anticataleptic

action, mice were treated intraperitoneally with WAY100635 (0.1 mg/kg), a 5-HT1A receptor antagonist,

30 min before of the treatment with CBD (30 mg/kg). The administration of WAY100635 prevented the

anticataleptic effect of CBD. Therefore, CBD exerting its anticataleptic action, through a mechanism that

involves 5-HT1A receptors, could be a possible therapeutic tool in Parkinson’s disease [88]. Moreover,

Sonego et al. evaluated the 5-HT1A receptors-mediated anticataleptic effect of CBD. In this study,

the researchers induced catalepsy, in male Swiss mice, with haloperidol (0.6 mg/kg). The pre-treatment

with CBD (15–60 mg/kg) i.p., prevented the catalepsy. To understand the mechanism of action, it was

demonstrated that administration i.p. of WAY100635 (0.1 mg/kg) reduced the anticataleptic effect of

CBD and its action on the expression of c-FOS. Moreover, it was shown that the administration of

bilateral injections of CBD (60 nmol) into the dorsal striatum, followed by treatment with haloperidol

(0.6 mg/kg), reduced the catalepsy, in a similar way to systemic administration. These data suggest

that this compound, via activation of 5-HT1A receptor, could represent a therapeutic opportunity for

the treatment of striatal disorders such as Parkinson’s disease [89].

Instead, Pelz et al. evaluated the role of the 5-HT1A receptors in the anticonvulsant effect of

CBD. In this study, to induce the experimental model of generalized seizure, male Wistar Kyoto rats

were given a single i.p. injection of 85 mg/kg pentylenetetrazole (PTZ), to induce seizures. Mice

received CBD at a dose of 100 mg/kg 60 min before induction of seizures. The results show that CBD

significantly reduced the proconvulsant activity induced by PTZ. In particular, CBD significantly

reduced seizure severity and the number of animals exhibiting seizure activity and prevented the severe

consequences of seizures. Serotonergic signaling is known to be involved in seizure susceptibility

and CBD shows a binding affinity for both 5-HT1A and 5-HT2A. To test the mechanism of action

used by CBD to exert these anticonvulsant effects, mice were pretreated with WAY 100635 (1 mg/kg),

a 5-HT1A antagonist, or MDL-100907 (0.3 mg/kg), a 5-HT2A antagonist. Contrary to what might be

expected, pretreatment with WAY 100635 and MDL-100907 did not reduce the anticonvulsant effect of

CBD. However, this study does not prove that CBD exerted its effects through the 5-HT1A or 5-HT2A

receptors [90].
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CBD has anxiolytic and analgesic effects and it is known that, at least in part, the anxiolytic effects

of CBD depend on the activation of 5-HT1A mediated neurotransmission. De Gregorio et al. evaluated

these effects using rats subjected to the spared nerve injury for 24 days to induce a neuropathic

pain. The animals were treated acutely with increasing intravenous (i.v.) CBD doses (0.1–1.0 mg/kg).

As CBD is poorly soluble in water, it was prepared in a vehicle of ethanol/Tween 80/0.9% saline (3:1:16).

Acute CBD treatment reduced the activating activity of 5-HT neurons in the dorsal raphe nucleus.

Additionally, to simulate the drug regimen used by patients using CBD to treat chronic neuropathic pain

and anxiety, the animals were treated with subcutaneous injections of CBD (5 mg/kg) for seven days.

Treatment with CBD for one week decreased mechanical allodynia and anxiety-like behavior, which

increased following the spared nerve injury. Furthermore, CBD normalized the activity of 5-HT neurons

in the dorsal raphe nucleus. To investigate the mechanism used by CBD, the animals were subjected

to single injections of WAY 100635 (0.3 mg/kg; i.v.), 5-HT1A antagonist, capsazepine (1 mg/kg; i.v.),

a TRPV1 antagonist and AM 251 (1 mg/kg; i.v.), to CB1 receptor antagonist. Capsazepine treatment

completely reduced the antiallodynic effect of CBD, while WAY100635 reduced this effect partially.

Instead, the anxiolytic effect of CBD was blocked following treatment with WAY100635. Therefore, it is

possible to conclude that treatment with CBD in low doses protects 5-HT neurotransmission, exerts

antiallodynic effects through the activation of TRPV1 and anxiolytic properties through the activation

of 5-HT1A receptors. In this way, CBD results as a possible candidate for treating neuropathic pain and

behavior disorders [91].

Instead, Magen et al. evaluated the 5-HT1A receptors-mediated therapeutic effects of CBD on

hepatic encephalopathy induced by bile duct ligation in a model of chronic liver disease. Mice subjected

to bile-duct ligation were treated with CBD (5 mg/kg) administrated i.p. every day for 28 days.

CBD treatment improved cognitive impairments and motor function. After four weeks of treatment,

CBD induced a reduction of expression of the TNF-α-receptor 1 gene in the hippocampus. Conversely,

increased the expression of the BDNF gene. To verify other mechanisms of action used by CBD

to exert these beneficial effects, the animals were co-treated with WAY 100635. Co-administration

of CBD and WAY 100635 reversed the effects of CBD, confirming the involvement of the 5-HT1A

receptors [83]. The same positive effects of CBD in the cognitive and locomotor deficits were observed

in another model of hepatic encephalopathy induced by injection of thioacetamide. One day after

thioacetamide-administration, the animals were given a single dose of 5 mg/kg i.p. Treatment

with CBD improved neurological and motor function, assessed, respectively, two and three days

after the induction of liver damage. While eight days after the induction of hepatic insufficiency,

CBD significantly ameliorated cognitive deficits, impaired following thioacetamide. However, 12 days

after treatment with thioacetamide, CBD normalized the 5-HT levels in the brain and induced an

improvement in liver function. In this way, the chronic treatment with CBD, through the indirect

activation of the 5-HT1A receptors, improved the cognitive and motor function of the rats with hepatic

encephalopathy [92].

In conclusion, the findings of these studies suggest that the neuroprotective effects of CBD are

mediated, at least in part, by 5-HT1A receptors. In this way, CBD protects against cerebral ischemia and

ameliorates the motor-related striatal damage in experimental models. In the same way, it improved the

cognitive and motor function in an in vivo model of hepatic encephalopathy. Moreover, CBD exhibited

anxiolytic properties through the activation of 5-HT1A receptors, in experimental models of anxiety-like

behavior disorders (Table 2).
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Table 2. Neuroprotective effects of CBD in different neurological diseases through the activation of the 5-HT1A.

In Vivo Models CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

MCA occlusion male
mice

3 or 10 mg/kg
Before and 3 h
after damage

CBD, at dose of 3 mg/kg, significantly reduced the infarct volume
induced by MCA occlusion, at least in part, through the 5-HT1A

receptor.

cerebral
ischemia

[87]

Male Swiss mice
5, 15, 30 or
60 mg/kg

30 min before receiving
the drugs that

induce catalepsy

Pretreatment with CBD reduced the cataleptic effects, in a
dose-dependent manner, through the 5-HT1A receptor.

striatal disorders [88]

Male Swiss mice
15–60 mg/kg or

60 nmol

30 min before or 2.5 h
after receiving the drugs

that induce catalepsy

Pretreatment with CBD reduced the cataleptic effects, in a
dose-dependent manner, through the 5-HT1A receptor.

striatal disorders [89]

Male Wistar Kyoto rats 100 mg/kg
60 min before

induction of seizures
CBD significantly mitigated PTZ-induced seizure. seizure disorders [90]

Adult male Wistar rats
0.1–1.0 mg/kg
and 5 mg/kg

Acute treatment with
cumulative injections of

CBD every 5 min and
repeated treatment with
5 mg/kg/day for 7 days

CBD (5 mg/kg) protects nerve injury-induced deficits in dorsal raphe
nucleus 5-HT neuronal activity. Moreover, CBD exerts antiallodynic

effects through the activation of TRPV1 and anxiolytic properties
through the activation of 5-HT1A receptors.

allodynia and
anxiety-like

behavior
[91]

Female Sabra mice 5 mg/kg 28 days

CBD, through the 5-HT1A receptor activation, improved cognition
and motor function, which were impaired by bile-duct ligation.

Moreover, in the animal model of hepatic encephalopathy, CBD also
reduced neuroinflammation, increasing expression of the BDNF

genes and reducing TNF-α receptor 1 gene expression.

hepatic
encephalopathy

[83]

Female Sabra mice 5 mg/kg Single dose
CBD ameliorated cognitive impairments and locomotor activity.

Moreover, CBD restored the 5-HT levels in the brain and improved
the liver function.

hepatic
encephalopathy

[92]

CBD, cannabidiol; MCA, middle cerebral artery; 5-HT1A, serotonin 5-hydroxytriptamine1A; PTZ, pentylenetetrazole; BDNF, brain-derived neurotrophic factor; TNF-α, tumor necrosis factor-α.
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6.1.3. GPR55

The CBD also exhibits a high affinity towards the G-protein-coupled receptor 55 (GPR55),

a class of receptors implicated in the synaptic transmission. GPR55 is a G protein-coupled receptor

widely expressed in the immune and nervous systems. GPR55 is involved in the modulation of

parameters and cell processes such as blood pressure and bone density modulation, cell migration and

proliferation, inflammation, neuropathic pain, energy balance and antiepileptic action [93]. GPR55 is

a seven-transmembrane receptor that acts as a G protein inducing the intracellular increase of Ca2+

and the phosphorylation of the extracellular receptor-activated kinases (ERK) protein, which in turn

is involved in proliferation, differentiation and cytoskeletal modulation [93]. GPR55 was found at

the post-synaptic level in endothelial cells and at the pre-synaptic level in the hippocampus where it

appears to increase the release of vesicular glutamate [94,95]. The facilitating effect of GPR55 contrasts

the action of CB1 receptors, inhibiting neurotransmitter release. On the contrary, CBD can suppress

GPR55 activation, thus increasing the release of neurotransmitters [96]. This mechanism, at least

in part, elucidates the anti-convulsive effect of cannabinoids towards epileptic pharmaco-resistant

patients [97]. In this regard, Kaplan et al. evaluated the GPR55-mediated antiepileptic properties of

CBD in a mouse model of genetically-induced Dravet syndrome (DS). CBD (100 mg/kg or 200 mg/kg)

was administered intraperitoneally, twice daily for one week. The acute treatment of CBD, in a manner

dependent on its concentration, reduced the thermally-induced seizures and significantly decreased the

rate of spontaneous seizures. Additionally, CBD treatment ameliorated hyperactivity due to disease.

Moreover, the mouse model of genetically-induced DS showed a decrease in the GABA inhibitory

transmission. The CBD treatment restored the excitability of neurons inhibitors in the dentate gyrus

of the hippocampus, which represents an important zone for convulsions propagation. To confirm

the involvement of GPR55 in anticonvulsant effects of CBD, mice were treated with a CID16020046

(10 µM), a GPR55 antagonist. The treatment with CID16020046 abolished the beneficial effects of

CBD in inhibitory. Thus, this result suggests that the therapeutic effects of CBD are mediated through

GPR55. Therefore, GPR55 could be an important therapeutic target for the treatment of epilepsy [98].

GPR55 can be involved in motor function. Celorrio et al. studied the effects of CBD

and abnormal-CBD on the modulation of GPR55, in an experimental model of Parkinson’s

disease. To induce Parkinson’s model, adult male C57BL/6 mice were treated, for five weeks,

with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (20 mg/kg) and probenecid (250 mg/kg),

a drug capable of reducing the renal disposal capacity of MPTP and its metabolites. MPTP mice

were treated with CBD (5 mg/kg) and abnormal-CBD (5 mg/kg), administered chronically for five

weeks. Abnormal-CBD is a synthetic CBD isomer that owns a high affinity towards GPR55. The study

demonstrated that abnormal-CBD prevented the motor deficits MPTP-induced, while CBD did

not produce a significant effect in motor behavior tests. However, both CBD and abnormal-CBD

induced morphological changes in the microglia, probably due to an anti-inflammatory response.

The anti-parkinsonian effect of abnormal-CBD was also confirmed in cataleptic mice induced by

i.p. injection of haloperidol (1 mg/kg). Instead, the administration of CBD (5 mg/kg) did not show

anti-cataleptic effects but rather abolished the action of abnormal-CBD. To confirm the involvement of

GPR55 in the results obtained, it was also shown that the treatment with PSB1216 (10 mg/kg), a GPR55

antagonist, abolished the effect of abnormal-CBD. Conversely, the treatment with GPR55 agonists such

as CID1792197 and CID2440433, similarly to abnormal-CBD, showed anti-cataleptic effects. Therefore,

the study demonstrated that compounds able to activate GPR55 could be beneficial in combating

PD [99].

The anti-inflammatory effects of CBD mediated by GPR55 were also tested by González-García et al.

in experimental autoimmune encephalomyelitis (EAE) mice, a model of multiple sclerosis.

The experimental model was induced in female C57BL/6J mice through i.p. injection of encephalitogenic

cells cultured with Myelin Oligodendrocyte Glycoprotein peptide 35–55 (25 µg/mL) and interleukin-12

(25 ng). After the induction of the model, animals were treated with CBD (5–10 mg/kg) or CBD

(50 mg/kg) i.p. The study showed an improvement in the disease already at low doses of CBD (5 mg/kg).
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In addition, it was shown an improvement of the disease with no signs of toxicity also at the high doses

of CBD (50 mg/kg). EAE induction caused a significant reduction in the levels of CB1 and the levels

were not restored by CBD treatment. On the contrary, CB2 was found in scarce levels in healthy control

mice, whereas its expression was significantly increased in the EAE mice. CBD induced a significant

reduction of CB2 expression in the treated animals. In the same way, the high level of EAE-induced

GPR55 was reduced after CBD treatment. Although the role of GPR55 in EAE is not fully understood,

its function for the disease can be very important. Indeed, mice with genetic deletion of GPR55 showed

a less severe form of EAE. Therefore, the action of CBD as an antagonist of the GPR55 receptor could

be useful to counteract the disease [100].

In conclusion, via the antagonist action of the GPR55 receptor, CBD carries out its anti-inflammatory

effects in experimental models of DS, Parkinson’s disease and EAE disease (Table 3).

6.2. TRP

TRP is a family of ion channels mainly located on the plasma membrane of many animal cells.

CBD could interact with TRP, thus modulating the inflammation [101]. Interestingly, CBD is a potent

and selective agonist of TRPV1, a TRP channel from the vanilloid subfamily. TRPV1 is a non-selective

cationic channel present on sensory tissues such as skin, lungs, heart and blood vessels. TRPV1

activation induces the release of neuropeptides involved in pain perception, neuroinflammation, and

regulation of body temperature [102]. Indeed, this receptor coupled to G proteins is characterized by

six transmembrane domains which can be activated by capsaicin and stimuli such as a low pH, heat

(>43 ◦C) and phytocannabinoids [101]. TRPV1 receptors are mainly expressed in the ganglia of dorsal

roots in the spinal cord, while in the CNS they located in the hypothalamus and hippocampus [103].

It is known that TRPV1 antagonists possess analgesic properties. However, the activation of TRPV1

receptors by some agonists, such as capsaicin, leads to the entry of Ca2+ and Na+ with consequent

desensitization of the channel [104]. Consequently, the increase of Ca2+ induced by capsaicin actives

the calcineurin protein which dephosphorylates TRPV1 and other proteins in the voltage-gated Ca2+

channels also involved in the nociceptive transmission. Thus, the receptor desensitization in response

to capsaicin can render the TRPV1 channel insensitive to further painful stimuli [105]. In the same way,

CBD agonist action towards TRPV1 induces the desensitization of these channels [106,107]. Therefore,

at least in part, the anti-nociceptive and antihyperalgesic actions of CBD appear to be mediated by

activation, dephosphorization and strong desensitization of TRPV1 channels [108].

Costa et al. showed the effects of CBD and the mechanisms associated with antihyperalgesic

action in a mouse model of acute inflammation. CBD (10 mg/kg) administered orally 2 h after

the induction of the model abolished the thermal hyperalgesia induced by carrageenan (0.1 mL).

The CBD co-administration with capsazepine (2 mg/kg), a synthetic capsaicin antagonist, suppressed

the carrageenan-induced hyperalgesia. Capsazepine at the higher dose (10 mg/kg) inhibited the

CBD-induced antihyperalgesic action. These data suggest how CBD can exert its antihyperalgesic

effect by directly involving TRPV1. Therefore, CBD could represent a valid therapeutical tool in the

treatment of pathological conditions such as neuropathy [31].

Moreover, CBD is also able to activate TRPV2, transient receptor potential ankyrin 1 (TRPA1) and

antagonize also the transient receptor potential cation channel subfamily M member 8 (TRPM8) [101].

CBD through TRP channels, involved in the proliferation and release of proinflammatory cytokines,

can regulate Ca2+ in immune and inflammatory cells [24].
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Table 3. Neuroprotective effects of CBD in different neurological diseases through the antagonize activation of the GPR55.

In Vitro and in Vivo
Models

CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

Scn1a mutant mice
10, 20, 100 or

200 mg/kg
Twice daily for 1 week

Acute treatment of CBD decreased thermally-induced seizures and
reduced the rate of spontaneous seizures. Moreover, the low doses of

CBD ameliorated the autism-type social interaction deficits in the
mouse model of genetically-induced DS. CBD also increased the
GABA inhibitory transmission which was impaired in DS. These

therapeutic effects of CBD are mediated through GPR55.

DS [98]

Adult male C57BL/6
mice

5 mg/kg 5 days a week for 5 weeks

Abnormal-CBD, but not CBD, ameliorated MPTP-induced motor
damage. Instead, both compounds significantly reduced the density

of microglial cells in the cell body. In the haloperidol-induced
catalepsy mouse model, abnormal-CBD also showed anti-cataleptic

effects, through the GPR55-activation.

Parkinson’s
disease

[99]

Male and female
C57BL/6 mice

5–10 and
50 mg/kg

Increasing doses from 5 to
10 mg/kg three times per

week, or daily, at a dose of
50 mg/kg, for 23 days

CBD, both at low and high doses, ameliorated the EAE disease.
Moreover, CBD treatment reduced the vitality of encephalitogenic

cells, levels of IL-6, production of ROS with consequent decrease of
the apoptosis process. Additionally, it decreased the levels of GPR55

receptors in the CNS.

EAE disease [100]

CBD, cannabidiol; DS, Dravet syndrome; GABA, γ-aminobutyric acid; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; EAE, experimental autoimmune encephalomyelitis; ROS,
reactive oxygen species; CNS, central nervous system.
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The effects of CBD and its affinity for the TRPV2 receptors were also demonstrated by Luo et al. in

human brain endothelial cells forming the BBB. CBD promoted a long-lasting increase of intracellular

Ca2+ level, especially at 15 µM dose. After 24 h of incubation, CBD treatment (0.1, 0.3, 1, 3 and

10 µM), in a dose-dependent manner, induced the cell growth of hCMEC/D3 cells, and, after 4 h,

it significantly enhanced cell migration. Instead, after 7 or 24 h, CBD significantly increased the

tubulogenesis of hCMEC/D3 cells. Additionally, after 72 h to seeding, treatment with 1 µM CBD

increased trans-endothelial resistance in human Primary Brain Microvascular Endothelial Cells

(hPBMECs) Monolayers. To demonstrate the possible involvement of TRPV2 in CBD-induced effect,

cells were pretreated, 5 min before added CBD, with ruthenium red, a nonspecific TRP antagonist, or

with tranilast, a selective TRPV2 inhibitor. Ruthenium red and tranilast suppressed the CBD-induced

long-lasting increase of intracellular Ca2+ levels. The same results were also obtained in silencing cells

with TRPV2 siRNA. These data highlight the role of TRPV2 in the CBD mechanism of action. Therefore,

CBD, due to the high affinity of TRPV2, could be a potential pharmacological tool to regulate the BBB

characteristic [109].

Nabissi et al. evaluated the role of CBD to contrast the proliferation of glioblastoma, through

activation of TRPV2. In this study, the authors showed that CBD (10 µM) improved the action of

cytotoxic agents able to contrast the proliferation of glioblastoma. CBD, through activation of TRPV2

and the consequent entry of Ca2+, improved the action of chemotherapy drugs. To confirm the

agonize effect of CBD on TRPV2, it was performed deletion of the TRPV2 poredomain. Since the

poredomain of the TRP channels is important for Ca2+ entry, the authors demonstrated that the deletion

of this region prevents CBD-induced influx of Ca2+ by reducing drug absorption and cytotoxic effects.

Therefore, with this result, it has been shown that CBD co-administered together with chemotherapeutic

agents, activating TRPV2, enhances drug absorption and cytotoxic activity in human glioma cells.

Consequently, the administration of chemotherapy drugs together with CBD could improve the efficacy

of therapy useful to counteracting the glioma cells [110].

Moreover, CBD, through the activation of the TRPV, is able to promote PI3K/Akt signaling,

which in turn inhibits the glycogen synthase kinase 3β (GSK-3β). The GSK-3β inhibition induces an

increase of the Wnt/β-catenin pathway, thus exerting a neuroprotective action against the oxidative

stress and neurotoxicity induces of Aβ in the Alzheimer’s disease [54]. In line with this evidence

in an in vitro model of Alzheimer’s disease, CBD treatment suppressed the hyperphosphorylation

of tau protein-mediated to β-catenin and GSK-3β, in Aβ-stimulated PC12 neuronal cells [111].

Moreover, CBD decreased Aβ levels in SH-SY5Y cells transfected with the amyloid precursor protein

(SH-SY5YAPP+) [64], and, in an Alzheimer’s disease mouse model, CBD administration ameliorated

cognitive impairment [112]. In this context, our research group, in a previous study, investigated the

involvement of TRPV2 in the molecular CBD’s mechanism of action, comparing the expression profiles

of human gingival mesenchymal stem cells treated with CBD (5 µM) to those without treatment.

The results of the transcriptomic analysis show that CBD decreased the expression of genes related

to Alzheimer’s disease. Conversely, CBD upregulated genes coding for the PI3K subunits and for

AKT1. Thus, CBD, through modulation of PI3K/Akt signaling, is capable of regulating GSK3β activity

and consequently improve hallmarks of Alzheimer’s disease. To study how CBD modulated the

PI3K/Akt signaling, human gingival mesenchymal stem cells were treated with antagonists for CB1R

(SR141716A), CB2R (AM630), or TRPV1 (capsazepine) receptors. Noteworthy, only the pretreatment

with capsazepine reversed the CBD-mediated effects. Therefore, CBD, by TRPV1 activation, promoted

the PI3K/Akt pathway that inactivates GSK3β. Thus, CBD could reduce Alzheimer’s hallmarks [37].

The results of the studies show that CBD activates and rapidly desensitize TRPV1, inducing

antihyperalgesic effects. Moreover, TRPV1 activation induced the PI3K/Akt pathway signaling,

which can reduce Alzheimer’s hallmarks. Instead, CBD, through activation of TRPV2, enhanced cell

proliferation and improved the action of chemotherapy drugs (Table 4).
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Table 4. Neuroprotective effects of CBD in different neurological diseases through the activation of the TRPV receptors.

In Vitro and in Vivo
Models

CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

Male Wistar rats 10 mg/kg
2 h after the induction of

model
CBD inhibited the carrageenan-induced hyperalgesia through the

desensitization of the TRPV1 receptor
Hyperalgesia [31]

hPBMECs and
hCMEC/D3 Cells

0.1, 0.3, 1, 3, 10
and 15 µM

7 or 24 h of incubation

CBD, in a dose-dependent manner, led a last-lasting increase in
intracellular Ca2+ level, through activation of TRPV2. In this way,

CBD, enhanced cell proliferation, cell migration and tubulogenesis in
human brain endothelial cells.

- [109]

U87MG glioma cell line 10 µM

Cells were treated with
different doses of CBD for
1 day or co-treated with

CBD 10 µM and
chemotherapeutic drugs

for 6 h.

CBD, through activation of TRPV2 and the consequent entry of Ca2+,
improved the action of chemotherapy drugs enhancing drug

absorption and ameliorated cytotoxic activity in human glioma cells.
- [110]

human Gingival
Mesenchymal

Stem Cells
5 µM 24 h of incubation

CBD, through TRPV1 desensitization, promoted the PI3K/Akt
pathway signaling, which can reduce Alzheimer’s hallmarks.

Alzheimer’s
disease

[37]

CBD, cannabidiol; hPBMECs, human primary brain microvascular endothelial cell.
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6.3. PPARγ Receptors

PPARγ represents a member of the nuclear receptor family and is also a transcription factor

modulated by a ligand that regulates the expression levels of genes involved in inflammation, trophic

factors production, redox equilibrium, metabolism of glucose and lipids [24,113,114]. PPARγ is also a

ubiquitin E3 ligase consisting of several residues of lysine, including Lysine48 capable of generating

polyubiquitin chains [115]. The polyubiquitin linked to Lysine48 of PPARγ is responsible for proteasomal

degradation of p65, which in turn leads to the inhibition of the inflammatory pathway mediated by

NF-κB. Indeed, the activation of PPARγ inhibits the transcription of proinflammatory genes, cytokines

such as TNF-α, IL-1β and IL-6, thus preventing the NF-κB signaling pathway [35]. Therefore, PPARγ

agonists such as CBD, inhibiting the transcription of downstream genes mediated by NF-κB can perform

an anti-inflammatory action through a molecular mechanism regulated by GSK3β [116].

This mechanism of action was evaluated by Scuderi et al. in SH-SY5YAPP+ cells, an in vitro model of

Alzheimer’s disease. SH-SY5YAPP+ cells were treated with CBD (10−9–10−6 M) for 24 h. Treatment with

CBD reduced the expression of the APP protein, as well as its ubiquitination, thus leading to the reduction

of Aβ and neuronal apoptosis. To demonstrate the selective involvement of PPARγ in mediating

CBD activity in SH-SY5YAPP+ cells, CBD was co-administered with MK886 (3 µM) or GW9662 (9 nM),

selective antagonists of PPARα and PPARγ, respectively. The results show that treatment with GW9662

(9 nM) led to the almost complete lack of efficacy of CBD, thus confirming that, the neuroprotective

role of this phytocannabinoid, involved the PPARγ receptors [64]. The neuroprotective effect of CBD

through the activation of PPARγ was observed in an experimental study of Alzheimer’s disease.

Esposito et al. showed both in vitro and in vivo the properties of PPARγ agonists and non-agonists on

neurotoxicity induced by Aβ. Cultures primary of rat astrocytes were induced with Aβ (1 µg/mL).

The treatment with CBD (10−9–10−7 M), in a concentration-dependent manner, reduced the effect of Aβ

mediated through the inhibition of NF-κB. On the contrary, the treatment with GW9662 (9 nM), a PPARγ

antagonist, was shown to reverse the anti-inflammatory effect of CBD. To confirm the results obtained

with CBD in reactive gliosis, Esposito et al. performed the study in vivo. Male Sprague-Dawley rats

were induced with Aβ (10 µg/mL). After the induction of the Alzheimer’s disease model, the animals

were treated for 15 days with CBD (10 mg/kg; i.p.). The data obtained show that CBD preserved from

the neuronal damage induced by Aβ and also led to a reduction of gliosis and glial fibrillary acidic

protein. Conversely, the administration of GW9662 (10 mg/kg), the antagonist PPARγ, has completely

reversed the neuroprotective effects of CBD. Therefore, the results obtained both in vitro and in vivo

confirm the important role of PPARγ in mediating the neuroprotective actions of CBD in experimental

models of Alzheimer’s disease [17]. The role of PPARγ in neuroprotective effects of CBD was also

demonstrated by Hughes et al. The hippocampal slices of C57/black 6 mice induced with soluble

oligomeric Aβ1–42 were treated with CBD 30 min before to the addition of Aβ1–42. The treatment with

CBD improved the synaptic transmission and the potentiation long-term in the hippocampus, thereby

preserving it from cognitive deficits induced by Aβ1–42. To understand the mechanism of action of

CBD, WAY 100635, (300 nM; 5-HT1A antagonists), ZM241385 (100 nM; A2AR antagonist), AM 251

(2 µM; CB1 inverse agonist) or GW9662 (2 µM; PPARγ antagonist) was added to the perfusate 30 min

before of CBD. It was shown that only the treatment with GW9662 attenuated the neuroprotective

effects of CBD. In addition, this study suggested that CBD, at least in part, through interaction with

PPARγ, could be a therapeutic potential for the treatment of Alzheimer’s disease [117].

The anti-inflammatory effect of CBD was also shown in tardive dyskinesia, a disease characterized

by chronic use of drugs capable of reducing or blocking the dopaminergic neurotransmission, which in

turn induces the abnormal and repetitive involuntary movements that mainly involve the orofacial

region [118]. In this context, Sonego et al. investigated the PPARγ-mediated protective effect of CBD

in vivo and in vitro models of dyskinesia haloperidol-induced. Swiss mice were received two daily i.p.

injections of CBD (60 mg/kg) for 21 days and 30 min later were treated with haloperidol (2 and 3 mg/kg).

The behavioral analysis showed that CBD treatment prevented dyskinesia induced by haloperidol

and reduced the oxidative stress and activation of microglial and inflammatory cytokine (IL-1β and
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TNF-α) in the corpus striatum. Moreover, it was shown to increase the expression of peroxisome

proliferator-activated receptor-γ coactivator 1-α, a co-activator of PPARγ, thereby confirming PPARγ as

a molecular target of CBD. To confirm the involvement of PPARγ in the effect of CBD, animals received

the injection of GW9662 (2 mg/kg), 30 min after CBD. The administration of GW9662, inhibited the

positive effect of CBD on dyskinesia. Moreover, to confirm the involvement of PPARγ, the authors also

performed an in vitro study. Primary microglial cells were pretreated with GW9662 (0.1, 1 and 10 µM),

30 min after treatment with CBD (10 µM) and 4 h after the cells were stimulated with lipopolysaccharide

(10 ng/mL). The in vitro study confirmed the results obtained in vivo, showing the involvement of

PPARγ in the neuroprotective effects of CBD [119].

Instead, Dos-Santos-Pereira et. evaluated the PPARγ-mediated effects of CBD on

l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia, a mouse model of Parkinson’s disease. Male

C57⁄BL6 mice were treated with 6-hydroxydopamine (6-OHDA) neurotoxin, which induces hallmarks

of Parkinson’s disease. To induce dyskinesia, 6-OHDA-lesioned animals were treated with l-DOPA for

21 days. Subsequently, 15 min before l-DOPA administration, mice received CBD (15, 30 and 60 mg/kg)

i.p. for three days. CBD alone was not able to prevent the l-DOPA-induced dyskinesia. To understand

the CBD’s mechanism of action, it was co-administrated with capsazepine (1 or 5 mg/kg), a TRPV-1

antagonist, or with arachidonoyl-serotonin (AA-5-HT; 5 mg/kg), an enzyme responsible for inhibiting

anandamide metabolism FAAH and TRPV-1. Co-administration with CBD and capsazepine, through an

increase in AEA and an antagonism of TRPV1 receptors, leads to the reduction of dyskinesia. Additionally,

co-treatment of CBD with AM 251 (1 mg/kg), a CB1 antagonist, or with GW9662 (4 mg/kg), an antagonist of

PPARγ receptors, reversed the anti-dyskinetic effect of CBD and capsazepine. In conclusion, CBD together

with capsazepine, through the interaction with CB1 and PPARγ receptors, could be a valid therapeutic

strategy to prevent the l-DOPA-induced dyskinesia in patients with Parkinson’s disease [120]. Hind et al.

also demonstrated the role of PPARγ in mediating the neuroprotective effects of CBD in experimental

models of ischemic damage. To induce ischemic damage, the cells were simulated using oxygen–glucose

deprivation. CBD treatment (100 nM, 1 µM and 10 µM) was administered either before or immediately

after the induction of ischemic damage. CBD (10 µM) reduced the increase of BBB permeability following

the ischemic damage. To assess the CBD’s mechanism of action, cells were treated with AM 251 (100 nM;

CB1 receptors antagonists), AM630 (100 nM; CB2 receptors antagonist), capsazepine (1 µM; TRPV1

channels antagonists), GW9662 (100 nM; PPARγ antagonist), SCH58261 (100 nM; A2ARs antagonist) and

WAY100135 (300 nM; 5-HT1A receptors antagonist). The neuroprotective effect of CBD was abolished

by the administration of GW9662 (100 nM) and partially reduced by WAY100135 (300 nM). To confirm

the involvement of PPARγ and 5-HT1A receptors underlying the neuroprotective effect of CBD, cells

were also treated with pioglitazone (a PPARγ agonist) and 8-OH-DPAT (an agonist of 5-HT1A receptors).

The treatment with these receptors showed similar effects of CBD on the permeability induced by

ischemic damage. Therefore, the study reported useful results on the neuroprotective effect of CBD in the

permeability of the BBB, through the activation of PPARγ and 5-HT1A [121].

In addition, in an experimental model of multiple sclerosis, PPARγ exerted an important role in

mediating the effects of CBD. Giacoppo et al. showed the effects of CBD in C57BL/6 mice with EAE

immunized with Myelin Oligodendrocyte Glycoprotein peptide 35–55 (300 µg). Fourteen days after

the induction of the EAE model, the mice were treated daily with CBD (10 mg/kg) i.p. The results of

the treatment demonstrate that CBD restored the PI3K/Akt/mTOR pathway, which was downregulated

after EAE induction. CBD treatment has also led to the reduction of inflammatory cytokines interferon-γ

(IFN-γ) and interleukin 17 (IL-17) and significantly increased the levels of PPARγ. These results suggest

that, at least in part, the effects of CBD could be related to the increased level of PPARγ. In conclusion,

CBD, through both enhanced PPARγ and modulation of the PI3K/Akt/mTOR pathway, could be an

interesting therapeutic target for multiple sclerosis [122].

In conclusion, the data obtained from these studies underline the implication of PPARγ in the

anti-inflammatory effects of CBD, in experimental models of Alzheimer’s disease, Ischemic stroke,

Parkinson’s disease and EAE disease (Table 5).
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Table 5. Neuroprotective effects of CBD in different neurological diseases through the activation of the PPARγ.

In Vitro and in Vivo
Models

CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

SH-SY5YAPP+ 10−9–10−6 M 24 h
CBD reduced the expression of the APP protein, as well as its ubiquitination,
thus leading to the reduction of Aβ and neuronal apoptosis. These CBD’s

effects were mediated by PPARγ activation.

Alzheimer’s
disease

[64]

Cultures primary of
astrocytes rat and male
Sprague-Dawley rats

10−9–10−7 M
for in vitro

study;
10 mg/kg, for
in vivo study.

Daily for 15 days

In the in vitro study, CBD in a concentration-dependent manner reduced the
effect of Aβ mediated through the inhibition of NF-κB. In addition, in vivo,
CBD ameliorated neuronal damage induced by Aβ and led to a reduction of
gliosis and glial fibrillary acidic protein. CBD exerts these effects through

PPARγ activation.

Alzheimer’s
disease

[17]

Hippocampal slices from
C57Bl/6 mice

10 µM
30 min before to the

addition of Aβ

The treatment with CBD improved the synaptic transmission and the
potentiation long-term in the hippocampus slice of C57/black 6 mice, thereby
preserving it from cognitive deficits induced by Aβ1–42. CBD exerts these

effects, at least in part, through interaction with PPARγ.

Alzheimer’s
disease

[117]

Primary microglial
cultures from brain of

male and female newborn
C57/BL6 mice and Swiss

mice

60 mg/kg; for
in vivo study;

10 µM for
in vitro study

Two daily injections
30 min before received

haloperidol for
21 days

In mice, CBD treatment prevented dyskinesia induced by haloperidol.
Moreover, in the corpus striatum, CBD reduced oxidative stress, activation

of microglial, inflammatory cytokine (such as IL-1β and TNF-α) and
increased anti-inflammatory cytokine IL-10. It was demonstrated that

PPARγ is a molecular target of CBD.
In the same way, it was also confirmed the effect of CBD through PPARγ on

lipopolysaccharide-stimulated microglial cells.

Tardive
dyskinesia

[119]

Male adult C57 ⁄ BL6 mice
15, 30 and
60 mg/kg

15 min before the
l-DOPA

administration for
three days

CBD alone was not able to prevent the l-DOPA-induced dyskinesia.
The co-treatment with CBD and capsazepine, through the interaction with

CB1 and PPARγ receptors, ameliorate dyskinesia.

Parkinson’s
disease

[120]

Human brain
microvascular endothelial
cell and human astrocyte

co-cultures modeled

100 nM, 1 and
10 µM

Either before or
immediately after the
induction of ischemic

damage

CBD (10 µM) prevented the enhance of BBB permeability following the
ischemic damage induced by oxygen-glucose deprivation, through the

activation of PPARγ and 5-HT1A receptors.
Ischemic stroke [121]

Male C57BL/6 mice 10 mg/kg

Daily treated,
approximately 14 days

after disease
induction, for 14 days

CBD treatment ameliorated the clinical evidence of disease in EAE mice.
CBD restored the PI3K/Akt/mTOR pathway that was downregulated after

EAE induction. Moreover, CBD reduced inflammatory cytokines IFN-γ and
IL-17 significantly and increased the levels of PPARγ. Probably,

the anti-inflammatory effects of CBD are linked to the increased of PPARγ.

EAE disease [122]

CBD, cannabidiol; SH-SY5YAPP+, SH-SY5Y cells transfected with the amyloid precursor protein; Aβ, amyloid-β; IL-1β, interleukin 1-β; IL-6, interleukin 6; TNF-α, tumor necrosis factor-α;
l-DOPA, l-3,4-dihydroxyphenylalanine; BBB, blood–brain barrier; IFN-γ, interferon-γ; IL-17, interleukin-17; EAE, experimental autoimmune encephalomyelitis.
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6.4. GABA Receptors

GABA is the principal inhibitory neurotransmitter of the CNS. This receptor binds three classes of

type A receptor: GABAA, GABAB and GABAC. Among these, the GABAA receptor subfamily appears

to be involved in many neurological diseases [123–125]. Deficits of this receptor are responsible

for several neurological disorders such as Huntington’s disease [126], cognitive alterations [3],

epileptic disorders [127], drug addiction [128], chronic stress and anxiety [129]. For these reasons,

GABAA receptor represents an interesting target for new compounds. CBD is known to potentiate

GABAA-mediated inhibitory currents by acting on the GABAA receptor [65]. In accordance with this

evidence, our research team in a previous work suggested that CBD might be able to decrease neuronal

excitability in NSC-34 motor neuron-like cells through enhancing the expression of genes linked in

GABA release and increasing the GABAA receptor gene expression [130].

Recently, CBD has been shown to be a promising compound in the treatment of patients with

drug-resistant DS [131–133]. In this context, Ruffolo et al. studied the effects of CBD on GABAA

receptor-mediated neuronal transmission using human cortical tissue obtained from patients with

DS and tuberous sclerosis complex (TSC). Cell membranes obtained from cortical tissue of patients

were transplanted in Xenopus oocytes to perform experiments. To evaluate the effect of CBD on GABA

currents, the cells were preincubated for 10 s with CBD (5 µM) before the co-application of GABA

and CBD. CBD enhanced the amplitude of the GABA-evoked current, in cortical tissue of patients

with DS. A similar effect was also obtained using cortical tissues of patients with TSC. These results

highlight that CBD, increasing the average amplitude of the currents evoked from GABA, could be a

new therapeutic discovery in drug-resistant DS [134]. In light of this evidence, in 2018, the US Food and

Drug Administration, approved CBD to treat DS and Lennox–Gastaut syndrome, two drug-resistant

epileptic syndromes [135].

In the treatment of these drug-resistant epileptic syndromes, CBD is often co-administered

with common antiepileptic drugs, such as clobazam (CLB). However, several clinical studies have

highlighted the existence of drug–drug interaction between CBD and CLB. In these studies, it was

observed that CBD causes an increase in plasma concentrations of both CLB and its active metabolite,

N-desmethylclobazam (N-CLB) [136–138]. Similar to CBD, CLB and N-CLB are positive allosteric

modulators of GABAA receptors [139–141]. In view of these this data, Anderson et al., in vivo

and in vitro, explored the pharmacodynamic and pharmacokinetic interactions of these compounds

highlighted the involvement of GABAA receptors. For the study, the researchers used mice with

heterozygous loss of function SCN1A (Scn1a+/−), a genetic model of DS. CBD was administrated i.p.

45 min before to receive CLB (0.1–10 mg/kg). The combined treatment of CBD and CLB resulted in

an increase of anticonvulsant effect against seizures compared to the administration of the single

compound. In this regard, the researchers investigated the novel pharmacodynamic mechanism

where CBD and CLB together enhanced inhibitory GABAA receptor activation using Xenopus oocytes

expressing GABAA receptors. For the in vitro study, GABA treatment (15 µM) was performed three

times with a washout period of 7–12 min between GABA applications. Subsequently, CBD (10 µM)

was co-applied with GABA, for 60 s. The results show that CBD and CLB exert their anticonvulsant

action by enhancing the activity of the GABAA receptor. This pharmacological interaction between

CBD and GABAergic drugs, like CLB, could explain the anti-seizures effect of CBD [142].

In another study, Aso et al. showed that chronic co-administration of ∆
9-THC and CBD

improves cognitive deficits in transgenic AβPP/PS1 mice, a model of Alzheimer’s disease. Interestingly,

the positive effects of co-administration of these two compounds may be related to a reduction

in glutamate ionotropic receptors AMPA Type Subunits 2/3 and an increase in GABAA receptors.

Therefore, this study further confirms the involvement of cannabinoids in excitatory and inhibitory

neural activity [143]. These studies demonstrated that CBD, enhancing inhibitory GABAA receptor

activation, could be an interesting approach for conditions such as epilepsy (Table 6).



Molecules 2020, 25, 5186 20 of 29

Table 6. Neuroprotective effects of CBD in different neurological diseases through positive allosteric modulation of GABAA receptors.

In Vitro and in Vivo
Models

CBD Dose Treatments Biological/Pharmacological Effect
Neurological

Diseases
Ref.

Surgical human DS and
TSC cortical tissue in

Xenopus oocytes
5 µM

Pre-incubation of cells of
10 s before the

co-application of GABA
and CBD

CBD, through positive modulation of GABAA receptors, enhanced
the amplitude of the GABA-evoked current, in brain tissues of

patients with DS and TSC.
DS and TSC [134]

Male and female
Scn1a+/− mice and

Xenopus oocytes
expressing GABAA

receptors

12 mg/kg or
100 mg/kg for
in vivo study;

10 µM for
in vitro study

In in vivo study, CBD was
administrated i.p. 45 min

before CLB;
in in vitro study CBD

(10 µM) was co-applied
with GABA, for 60 s

CBD significantly increased the concentrations of CLB and its active
metabolite N-CLB, both in the plasma and in the brain.

Co-administration of both compounds significantly increased the
anticonvulsant effect. CBD and CLB exert their anticonvulsant action

by enhancing the activity of the GABAA receptor.

DS [142]

CBD, cannabidiol; GABA, γ-aminobutyric acid; DS, Dravet syndrome; TSC, tuberous sclerosis complex; Scn1a+/−, heterozygous loss of function SCN1A; CLB, clobazam; N-CLB,
N-desmethylclobazam.
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7. Conclusions

The neuroprotective properties of CBD are performed via several mechanisms of action.

CBD mainly exerts these effects through multiple biological targets. Specifically, CBD, through

A2AR activation, exerts anti-inflammatory effects in animal models of Alzheimer’s disease and multiple

sclerosis. Moreover, at least in part, it exerts neuroprotective effects by the activation of 5-HT1A

receptors. In experimental models of Parkinson’s disease and DS, CBD performs its beneficial effects

antagonizing the GPR55 receptor. Noteworthy, CBD through the TRPV1 activation could modulate

PI3K/Akt signaling, thus ameliorating the Alzheimer’s hallmarks. Additionally, the neuroprotective

properties of CBD in Alzheimer’s and Parkinson’s diseases are also mediated by the interaction with

PPARγ. Instead, CBD, enhancing the inhibitor GABA transmission, could be an interesting tool to

treat epilepsy condition. The preclinical evidence reviewed here, linked with the already reported

safety profile of CBD in humans, highlights that CBD represents a new opportunity for the treatment

of several neurological diseases. However, further studies are needed to elucidate the molecular

mechanisms underlying the properties of CBD and identify new molecular targets.
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Abbreviations

CBD cannabidiol

∆
9-THC ∆

9-tetrahydro-cannabinol

Nrf2 nuclear factor erythroid 2 – related factor 2

SOD superoxide dismutase

GSH glutathione

ROS reactive oxygen species

iNOS inducible nitric oxide synthase

IL-6 interleukin-6

IL-1β interleukin-1β

TNF-α tumor necrosis factor α

NF-κB nuclear factor κB

PPARγ peroxisome proliferator-activated receptor γ

TRP transient receptor potential

TRPV transient receptor potential vanilloid

CB1 cannabinoid receptor type 1

CB2 cannabinoid receptor type 2

2-AG 2-arachidonoyl glycerol

AEA arachidonoylethanolamide

ECS endocannabinoid system

Ca2+ calcium

FAAH fatty acid amide hydrolase

GABA γ-aminobutyric acid

5-HT Serotonin

GPCRs G protein-coupled receptors

ARs adenosine receptors

BBB blood–brain barrier

CYPs cytochrome P450 enzymes

7-OH-CBD 7-hydroxycannabidiol

Gi/o inhibiting G
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cAMP cyclic adenosine monophosphate

PI3K/Akt phosphoinositide 3-kinases/protein kinase B

CNS central nervous system

TMEV Theiler’s murine encephalomyelitis virus

i.p. intraperitoneal

VCAM-1 vascular cell adhesion molecule-1

CCL2 chemokine 2

CCL5 chemokine 5

COX-2 cyclooxygenase-2

Aβ amyloid-β

BDNF brain-derived neurotrophic factor

K+ potassium

MCA middle cerebral artery occlusion

PTZ pentylenetetrazole

i.v. intravenous

GPR55 G protein-coupled receptors 55

ERK extracellular receptor-activated kinases

DS Dravet syndrome

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

EAE experimental autoimmune encephalomyelitis

TRPA1 transient receptor potential ankyrin 1

TRPM8 transient receptor potential cation channel subfamily M member 8

hPBMECs human Primary Brain Microvascular Endothelial Cells

GSK-3β glycogen synthase kinase 3β

SH-SY5YAPP+ SH-SY5Y cells transfected with the amyloid precursor protein

l-DOPA l-3,4-Dihydroxyphenylalanine

6-OHDA 6-hydroxydopamine

AA-5-HT arachidonoyl-serotonin

IFN-γ interferon-γ

IL-17 interleukin-17

TSC tuberous sclerosis complex

CLB clobazam

N-CLB N-desmethylclobazam

Scn1a+/− heterozygous loss of function SCN1A
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