
Citation: Choi, K.; Lee, Y.; Kim, C.

An In Silico Study for Expanding the

Utility of Cannabidiol in Alzheimer’s

Disease Therapeutic Development.

Int. J. Mol. Sci. 2023, 24, 16013.

https://doi.org/10.3390/

ijms242116013

Academic Editor: Hao Lin

Received: 29 September 2023

Revised: 18 October 2023

Accepted: 20 October 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

An In Silico Study for Expanding the Utility of Cannabidiol in
Alzheimer’s Disease Therapeutic Development
Kyudam Choi 1, Yurim Lee 2 and Cheongwon Kim 2,*

1 Heerae Co., Ltd., Seoul 06253, Republic of Korea; kch38896@naver.com
2 Department of Software, Sejong University, Seoul 05006, Republic of Korea; yurimlee714@gmail.com
* Correspondence: wikim@sejong.ac.kr

Abstract: Cannabidiol (CBD), a major non-psychoactive component of the cannabis plant, has
shown therapeutic potential in Alzheimer’s disease (AD). In this study, we identified potential CBD
targets associated with AD using a drug-target binding affinity prediction model and generated
CBD analogs using a genetic algorithm combined with a molecular docking system. As a result,
we identified six targets associated with AD: Endothelial NOS (ENOS), Myeloperoxidase (MPO),
Apolipoprotein E (APOE), Amyloid-beta precursor protein (APP), Disintegrin and metalloproteinase
domain-containing protein 10 (ADAM10), and Presenilin-1 (PSEN1). Furthermore, we generated CBD
analogs for each target that optimize for all desired drug-likeness properties and physicochemical
property filters, resulting in improved pIC50 values and docking scores compared to CBD. Molecular
dynamics (MD) simulations were applied to analyze each target’s CBD and highest-scoring CBD
analogs. The MD simulations revealed that the complexes of ENOS, MPO, and ADAM10 with
CBD exhibited high conformational stability, and the APP and PSEN1 complexes with CBD analogs
demonstrated even higher conformational stability and lower interaction energy compared to APP
and PSEN1 complexes with CBD. These findings demonstrated the capable binding of the six
identified targets with CBD and the enhanced binding stability achieved with the developed CBD
analogs for each target.

Keywords: cannabidiol; Alzheimer’s disease; target identification; drug optimization; molecular
docking; molecular dynamics

1. Introduction

Cannabis, which contains more than 700 chemical compounds, has traditionally been
used in various industries, including food, pharmaceuticals, and textiles. Two major com-
pounds in cannabis are tetrahydrocannabinol (THC) and cannabidiol (CBD), which are
known as cannabinoids [1]. THC is a major psychoactive component of the cannabis plant
and is classified as a narcotic. On the contrary, CBD, a major non-psychoactive compo-
nent of the cannabis plant, has polypharmacological properties and has been extensively
evaluated for various disease indications. Clinical studies on CBD have shown its effi-
cacy in treating multiple clinical conditions, such as chronic pain, depression, anxiety
disorders, sleep disorders, and psychosis [2,3]. Additionally, CBD has been recognized
as a typical therapeutic and preventive agent for neurological diseases, including anxiety,
depression, and epilepsy [4–7], and neurodegenerative diseases, including Parkinson’s
disease, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis [5,8,9].

AD is one of the most common neurodegenerative diseases, with no treatment or
prevention measures but only limited symptom relief [10]. AD majorly has two biomarkers,
which are senile plaques made of β-amyloid protein and hyperphosphorylated tau-induced
neurofibrillary tangles [10,11]. Recently, several works have indicated CBD’s role in treating
and preventing AD. CBD has been shown to reduce tau protein hyperphosphorylation [12]
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and accumulation of β-amyloid protein [13] and to have anti-inflammatory and antioxidant
properties [14–16].

Previous works have been introduced in two approaches to expand CBD’s role in
treating and preventing AD. The first approach was identifying targets associated with
AD by which CBD was activated. Especially, several works have shown that CBD has
a low affinity for classic targets, such as cannabinoid receptor type 1, 2 (CB1, CB2), de-
spite acting as an antagonist/inverse agonist in them [17–20], so they identify potential
targets, such as non-endocannabinoid G protein-coupled receptor 3, 55, 6 (GPR3, GPR55,
GPR6), transient receptor potential vanilloid type 1 (TRPV1), and peroxisome proliferator-
activated receptors (PPARs), and indicate the pharmacological role of CBD on targets
in vitro, and in vivo [13,21–24]. The second approach was generating CBD analogs that
increase affinities on targets, have a wide range of anti-inflammatory activities, and opti-
mize their properties [25–27]. CBD analogs were generated experimentally, and most of
their biological properties and activities are indicated in vitro. Therefore, existing CBD
targets and analogs have demonstrated their utility, but their generation steps are relatively
time-consuming and costly compared in silico.

In this paper, we identified six potential CBD targets associated with AD and generated
CBD analogs that can interact with each target through in in silico methods. Subsequently,
we explored the potential of these CBD targets and analogs using extensive analyses. Po-
tential targets were identified using our target identification method, which consisted of
molecular similarity and a drug–target binding affinity prediction model called DeepPur-
pose [28]. These targets demonstrated interaction with CBD based on drug–target binding
affinity and molecular docking. To generate CBD analogs, we employed our molecular-
constrained optimization method [29], which combined a genetic algorithm (GA)-based
method with molecular docking. This method automatically modified the molecular sub-
structure while maintaining the scaffold, aiming to achieve a lower docking score to the
protein target and optimize desired drug-likeness properties and physicochemical filters. Fi-
nally, the structural stability of CBD-identified target complexes and CBD analog-identified
target complexes were analyzed through molecular dynamics (MD) simulations.

2. Results
2.1. Identified Potential CBD Target Related to AD

We extracted 74 CBD-like molecules with an average fingerprint Tanimoto similarity
score higher than 0.4 between CBD and other molecules. Subsequently, we calculated the
binding affinity between each CBD and the CBD-like molecules’ targets using DeepPur-
pose. The binding affinity was calculated via the log scale of the half-maximal inhibitory
concentration (pIC50 value). The pIC50 value depended on the concentrations of the target
and drug molecules, where an increased pIC50 value indicated a stronger binding affinity.
We initially selected 3646 potential targets having higher than 4.0 pIC50 values in both CBD
and CBD-like molecules and further filtered targets associated with AD among potential
targets. As a result, we identified six related to AD as potential targets: Endothelial NOS
(ENOS), Myeloperoxidase (MPO), Apolipoprotein E (APOE), Amyloid-beta precursor pro-
tein (APP), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10),
and Presenilin-1 (PSEN1). This result is shown in Table 1. The pIC50 values of these
potential targets ranged from 4.81 to 7. The pIC50 values of known targets predicted by
DeepPurpose ranged from 5.17 to 7.64, as shown in Table S1. Known targets included CB1,
CB2, GPR3, GPR55, GPR6, TRPV1, and PPARs. CBD has demonstrated interaction with
CB1 and CB2 receptors when CBD is at doses equivalent to or lower than 1 µm, despite
low affinities [30] and has been revealed for its interactions with other targets through
experimental studies. While it may be difficult to assert that these binding affinities surpass
the known CBD targets, these were in line with, or at least closely approximated, those of
known targets.

These targets had ‘Alzheimer’s disease’ phenotype data in the Online Mendelian
Inheritance in Man (OMIM) [31], highlighting their strong connection to AD. Furthermore,
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we detailed the biological activities of these targets and their relevance to AD, with APOE,
APP, ADAM10, and PSEN1 being implicated in the signaling pathways of AD according to
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [32]. Genetic studies have pointed
towards the association of these four genes with familial early-onset AD. Additionally, we
found that MPO response to oxidative stress promotes Aβ deposition, tau hyperphospho-
rylation, and the subsequent loss of synapses and neurons [33], and ENOS has negative
regulation of blood pressure, which is associated with AD [34].

Table 1. Identified potential targets for CBD associated with AD.

Uniprot ID Target Name Binding Affinity (pIC50)

P29474 ENOS 5.42
P05164 MPO 7.00
P02649 APOE 5.85
P05067 APP 5.86
O14672 ADAM10 4.81
P49768 PSEN1 6.78

2.1.1. Molecular Docking Analysis for CBD-Protein Complex

Before starting the docking analysis, we conducted a re-docking procedure for the
known compound on its targets to validate the binding site. The results of this re-docking
validation are illustrated in Figure S2 and Table S3, and docking parameters are provided
in Table S2. We calculated the docking score between CBD and identified potential targets
through Qvina-W [35]. A recent study showed that a docking score of less than −5 kcal/mol
indicates a good binding activity between molecule and target, and a docking score of
less than −7 kcal/mol indicates a more robust binding activity [36]. Table 2 demonstrated
docking scores between CBD and identified targets, and docking scores are observed to be
in the range of −8.0 to −6.4. It showed that CBD had the potential to bind all identified
targets since all docking scores are less than −5 kcal/mol.

Table 2. CBD docking score (kcal/mol) to identify potential targets related to AD by molecular docking.

PDB ID Target Name Docking Score (kcal/mol)

3NOS ENOS −8.0
1DNW MPO −6.6
1B68 APOE −5.8

1AAP APP −6.4
6BE6 ADAM10 −7.0
5A63 PSEN1 −7.9

The binding sites involving CBD and each of the identified potential targets were
shown in Figures 1 and 2, with further details provided in Table 3. The hydrogen bond and
the hydrophobic interaction were important contributors to drug–protein interaction. They
associated the binding affinity between ligand–protein interfaces and drug efficacy [37].
The biological activity of the drug lead is proportional to the number of hydrophobic
atoms in the active core of the ligand–protein interface [38]. As illustrated in Figure 2 and
summarized in Table 3, the number of stabilized hydrophobic interactions in the complexes
was as follows: 11 for CBD in complex with ENOS, 11 for MPO, 10 for APOE, 6 for APP, 15
for ADAM10, and 11 for PSEN. CBD-MPO complex was stabilized by a hydrogen bond
with 1 residue measured 2.9 Å.
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Figure 1. Molecular docking of identified potential targets to CBD : (a) ENOS, (b) MPO, (c) APOE,
(d) APP, (e) ADAM10, and (f) PSEN1. CBD is colored magenta, and protein is colored green.

Figure 2. CBD-identified potential targets’ interaction plots : (a) ENOS, (b) MPO, (c) APOE, (d) APP,
(e) ADAM10, and (f) PSEN1.
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Table 3. Molecular interaction of identified target active site with CBD.

Complex Name
Residues of Residues of

Hydrophobic Interaction Hydrogen Bond (Å)

CBD-ENOS Gly355, Ser354, Phe473, Phe353, Trp178,
-Leu193, Ala181, Val336, Mel339, Arg183, Cys184

CBD-MPO Pro145, Phe146, Met411, Arg424, Leu420,
Glu102 (2.9 Å)Leu415, Phe147, Leu417, Leu406, Phe407, Glu242

CBD-APOE Leu63, Arg32, Tyr36, Asp35, Glu50, Trp39 -

CBD-APP Thr26 (A), Ala9 (A), Tyr22 (A), Gln8 (A), Asp24 (A), -Gln8 (B), Ala9 (B), Tyr22 (B), Asp24 (B), Thr26 (B)

CBD-ADAM10
Glu579, Gln560, Phe635, Ser630, Asp425,

-Pro631, Ser423, Val376, Gly629, Val372,
Asn556, Pro373, Ser350, Thr422, His371

CBD-PSEN1
Phe229, Phe173, Ile690, Leu20, Tyr119,

-Arg115, Phe698, Thr172, Val176, Ala232, Gln116

2.1.2. Molecular Dynamics Analysis for CBD-Protein Complex

We used MD simulations to explore various aspects of the ligand–protein complexes,
including their internal motion, conformational changes, interaction mechanisms, and
binding stability [39]. To determine the stability of the CBD-protein complex, we calculated
root-mean-square deviation (RMSD), solvent-accessible surface area (SASA), radius of
gyration (Rg), and root-mean-square fluctuation (RMSF) during a 100 ns simulation.

RMSD was employed to evaluate the structural stability and deviation of the
ligand–protein complexes. As shown in Figure 3a, the range of RMSD values was 0–0.5 nm,
0–0.8 nm, 0–2 nm, 0–5.9 nm, 0–0.6 nm, and 0–2.2 nm for CBD in complex with ENOS,
MPO, AOPE, APP, ADAM10, and PSEN, respectively. The analysis of these RMSD values
indicated that most complexes remained stable during the simulation period, with RMSD
values consistently below 1 nm. This stability showed that the ligand–protein interactions
in these complexes were relatively well maintained, with minimal deviation from their
initial conformations.

Rg was employed to evaluate the compactness of ligand–protein complexes. As shown
in Figure 3b, the range of Rg values was 5.7–5.9 nm, 6.7–6.9 nm, 4.1–4.3 nm, 3.1–3.3 nm,
6.7–6.9 nm, and 7.1–7.3 nm for CBD in complex with ENOS, MPO, AOPE, APP, ADAM10,
and PSEN, respectively. The analysis of Rg values indicated that all complexes displayed a
low degree of fluctuation, which means a high degree of compactness and stability in the
ligand–protein interactions.

The SASA was employed to evaluate the exposure of the ligand–protein complex to the
solvent. As shown in Figure 3c, the range of SASA values was 36.8–52.8 nm2, 67.7–87.2 nm2,
13.2–24.9 nm2, 4.6–11.6 nm2, 61.6–82.6 nm2, and 82.8–104.8 nm2 for CBD in complex with
ENOS, MPO, AOPE, APP, ADAM10, and PSEN, respectively. The analysis of SASA values
indicated the overall stability of all complexes during the simulation period, with only
minor fluctuations in SASA values.

The RMSF was employed to provide a conformational dynamics and flexibility of a
protein as a function of residue number. We found which residues in the protein exhibit
significant fluctuations in their positions when bound to CBD by analyzing the RMSF values.
As shown in Figure 4, the range of RMSF values was 0–0.6 nm, 0–1.0 nm, 0–0.8 nm, 0–1.6 nm,
0.1–1.1 nm, and 0.1–1.8 nm for CBD in complex with ENOS, MPO, AOPE, APP, ADAM10,
and PSEN, respectively. The RMSF values for these complexes were consistently within
the range of 1.8 nm or below. The analysis of RMSF values indicated that these complexes
did not undergo significant structural deviations during the simulation, demonstrating
good stability.
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Figure 3. MD simulation analysis of the system of CBD-target complexes over 100 ns: (a) RMSD;
(b) Rg; (c) SASA.
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Figure 4. RMSF analysis of the system of CBD-target complexes over 100 ns: (a) ENOS; (b) MPO;
(c) APOE; (d) APP; (e) ADAM10; and (f) PSEN1.

2.2. Generation of CBD Analogs for Each Identified Potential Target

Utilizing a molecular-constrained optimization method, we systematically generated
CBD analogs for each identified potential target with a dual focus: minimizing docking
scores while optimizing drug-likeness properties and adhering to physicochemical property
filters. As a result, we generated three CBD analogs for ENOS and APP, one CBD analog
for MPO and APOE, five CBD analogs for ADAM10, and seven CBD analogs for PSEN1, as
shown in Figure 5. The pIC50 value of CBD analogs, calculated by DeepPurpose, increased
overall compared to CBD. The No.2 molecule for ENOS, the No.1 molecule for MPO,
the No.2 and 3 molecules for APP, and the No.1 molecule for ADAM10 had the highest
pIC50 values, and pIC50 values are increased by 1.02, 0.80, 1.04, and 0.8 compared to
CBD, respectively.
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Figure 5. Two-dimensional structure and binding affinity of generated CBD analogs for each identified
potential target.

2.2.1. Optimization of Molecular Properties

The molecular-constrained optimization method generated CBD analogs that conform
to desired drug-likeness properties and physicochemical property filters. The generated
CBD analogs satisfied criteria such as a quantitative estimate of drug-likeness (QED) ≥ 0.5,
synthetic accessibility (SAScore) ≤ 6.0, logP ≤ 5.0, and physicochemical property filters,
such as pan-assay interference compounds (PAINS) filter [40], BRENK filter [41], NIH
filter [42], and ZINC filter. The QED cutoff was based on a study in which oral drugs
approved by the FDA have an average of 0.539 QED [43]. The SAScore cutoff was based
on a study in which synthesis is difficult if SAS > 6.0 [44]. The cutoff for logP was based
on a study in which 90% of oral drugs that have achieved phase II clinical status had
logP < 5.0 [45]. We optimized penalized logP (plogP) [46], which was used to prevent
abnormally many ring structures and was calculated as follows:

plogP = logP − SAScore − RingPenalty (1)

Additionally, we measured the blood–brain barrier (BBB) permeant of generated CBD
analogs using SwissADME [47] due to our target disease being AD. Most of the CBD
analogs exhibited a BBB permeant, except for the No.1 molecule for MPO and the No.4 and
No.5 molecules for ADAM10.

Table 4 outlines the optimized drug-likeness properties, physicochemical property
filters, and BBB permeability of the CBD analogs for each identified potential target. These
results collectively showed the performance of the molecular-constrained optimization
method in yielding CBD analogs that satisfied the desired properties while retaining the
potential for BBB permeation, and it explained the possibility of the drug for AD.

2.2.2. Molecular Docking Analysis for CBD Analog–Protein Complex

CBD analogs had lower or similar docking scores than CBD. Table 5 demonstrated
docking scores between CBD analogs and each identified a potential target, and dock-
ing scores are observed to be in the range of −8.8 to −6.1. Notably, multiple analogs
demonstrated superior docking scores compared to CBD, with three analogs for ENOS,
two for ADAM10, and one for MPO and APOE. This result demonstrated the potential of
the molecular-constrained optimization method in generating CBD analogs that exhibit
enhanced interactions with the targets.
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Table 4. Optimized molecular properties, filters, and BBB permeant of CBD analogs for each identified
potential target.

Target Name No. QED SAScore plogP logP
Filters BBB

(PAINS, BRENK, NIH, ZINC) Permeant

ENOS
No.1 0.73 3.28 0.12 3.41 Pass Yes
No.2 0.80 3.58 0.86 4.44 Pass Yes
No.3 0.83 3.65 0.64 4.30 Pass Yes

MPO No.1 0.65 3.80 −0.86 2.94 Pass No

APOE No.1 0.82 3.50 1.18 4.69 Pass Yes

APP
No.1 0.68 3.69 −0.57 3.12 Pass No
No.2 0.85 3.80 −0.02 3.78 Pass Yes
No.3 0.73 3.67 1.11 4.78 Pass Yes

ADAM10

No.1 0.69 3.77 −0.41 3.36 Pass Yes
No.2 0.74 3.76 −0.01 3.75 Pass Yes
No.3 0.76 3.73 0.23 3.97 Pass Yes
No.4 0.67 3.82 −0.45 3.36 Pass No
No.5 0.67 3.82 −0.89 2.93 Pass No

PSEN1

No.1 0.79 3.58 0.92 4.51 Pass Yes
No.2 0.82 3.85 0.95 4.81 Pass Yes
No.3 0.73 3.79 0.43 4.22 Pass Yes
No.4 0.81 3.72 0.18 3.91 Pass Yes
No.5 0.76 3.73 0.22 3.96 Pass Yes
No.6 0.75 3.60 0.05 3.65 Pass Yes
No.7 0.87 3.79 0.29 0.40 Pass Yes

Additionally, given the recognized significance of the endocannabinoid system in
AD [48,49], we employed the CIRCE [50] to validate the interaction between CBD analogs
and this system. This software predicts whether a query compound acts as a ligand in the
endocannabinoid system by comparing its similarity to known ligands interacting with
CB1, CB2, and GPRs. The probability prediction of the endocannabinoid system class is
expressed as a value ranging from 0 to 1. As shown in Table 5, all CBD analogs exhibited
the potential to interact with the endocannabinoid system, having a score of 0.2 or higher.
Key substructures of CBD analogs for CB1 and CB2 interactions are illustrated in Figure S1.
This result demonstrated that CBD analogs exhibited enhanced interactions with the targets
and exhibited interactions with the endocannabinoid system.

We used the No.1 CBD analog in each target for visualization and MD simulation. The
binding sites involving the CBD analog and each of the identified potential targets are shown
in Figures 6 and 7, with further details provided in Table 6. As shown in Figure 7 and
summarized in Table 6, the number of stabilized hydrophobic interactions in the complexes
was as follows: 9 for CBD analog in complex with ENOS, 7 for MPO, 7 for APOE, 7 for
APP, 10 for ADAM10, and 11 for PSEN. The number of stabilized hydrogen bonds in the
complexes was as follows: four for CBD analog in complex with MPO, three for APP, and two
for ADAM10.

The structural analysis revealed distinct interactions between CBD analogs and the
identified targets compared to the CBD complex. The CBD analog-ENOS complex shared
the same four residues as the CBD complex: Gly355, Cys184, Ser354, and Phe353. CBD
analog-MPO complex shared the same six residues as the CBD complex: Leu415, Phe407,
Leu417, Pro145, Phe147, and Arg424. In these residues, Phe147 and Arg424 changed
hydrophobic interaction to the hydrogen bond. The CBD analog-APOE complex shared
all residues identically with the CBD complex. The CBD analog-APP complex shared all
residues identically with the CBD complex. In these residues, Ala9(B), Asp24(A), and
Gln8(B) shifted hydrophobic interaction to the hydrogen bonds. The CBD analog-ADAM10
complex shared the same nine residues: Thr422, Pro373, Asn556, Gln560, Pro631, Ser630,
His371, Val372, and Gly629. In these residues, Thr422 and Asn556 shifted hydrophobic
interaction to the hydrogen bond. The CBD analog-PSEN1 complex shared the same nine
residues: Gln116, Ile690, Tyr119, Phe173, Phe229, Val176, Ala232, Phe698, and Arg115.
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Overall, this result demonstrated the potential of CBD analogs to foster distinct binding
interactions, potentially influencing the affinity of the compounds for these targets.

Table 5. docking score of CBD analogs for each identified potential target. Potential1 is the potential
of CBD analog to interact with a CB1 or CB2. Potential2 is the potential of CBD analog preferentially
binds to cannabinoid receptors compared to other GPRs.

Target Name No. Docking Score (kcal/mol) Potential1 Potential2

ENOS
No.1 −8.8 0.33 0.4
No.2 −8.7 0.3 0.68
No.3 −8.2 0.3 0.46

MPO No.1 −7.4 0.32 0.54

APOE No.1 −6.1 0.61 0.82

APP
No.1 −6.5 0.63 0.83
No.2 −6.1 0.21 0.44
No.3 −6.1 0.63 0.83

ADAM10

No.1 −7.0 0.35 0.54
No.2 −7.6 0.37 0.57
No.3 −7.2 0.32 0.54
No.4 −6.9 0.34 0.62
No.5 −6.7 0.36 0.59

PSEN1

No.1 −8.0 0.22 0.48
No.2 −7.9 0.42 0.77
No.3 −7.9 0.32 0.54
No.4 −7.8 0.23 0.43
No.5 −7.7 0.43 0.56
No.6 −7.7 0.32 0.47
No.7 −7.5 0.33 0.53

Table 6. Molecular interaction of identified target active site with CBD analogs.

Complex Name Residues of Residues of
Hydrophobic Interaction Hydrogen Bond (Å)

CBD analog Trp178, Gly355, Pre334, --ENOS Cys184, Trp356, Mel358,
Gly186, Ser354, Phe353

CBD analog Glu102, Leu415, Phe147 (2.57 Å), Arg424 (3.33 Å),
-MPO Phe146, Leu420, Phe407, Arg333 (3.25 Å),

Leu417, Pro145, Phe147 His336 (2.94 Å)

CBD analog Glu59, Tyr36, Leu63
--APOE Arg32, Asp35, Trp39, Glu50

CBD analog Ala9 (A), Thr26 (B), Tyr22, la9 (B) (3.21 Å)
-APP Asp24 (B), Ty422, Gln8 (A), Thr26 (A) Asp24 (A) (2.81 Å), Gln8 (B) (2.79 Å)

CBD analog Gly629, Try638, Ser370,
Thr422 (2.71 Å), Asn556 (3.05 Å)-ADAM10 Val372, Ser630, His371,

Pro631, Gln560, Pro373, Val376

CBD analog Gln116, Ile690, Tyr119,
--PSEN1 Phe173, Ala228, Phe229, Val176,

Ala232, Phe698, Arg115, Thr24

2.2.3. Molecular Dynamics Analysis for CBD Analog–Target Complex

We measured the binding stability of the CBD analog–protein complex using MD
simulation during a 100 ns simulation. As shown in Figure 8, the range of RMSD values
was 0–0.4 nm, 0–1.2 nm, 0–1.4 nm, 0–0.4 nm, 0–0.7 nm, and 0–0.8 nm for the CBD analog in
complex with ENOS, MPO, AOPE, APP, ADAM10, and PSEN, respectively. The range of
Rg values was 5.7–5.9 nm, 6.7–6.9 nm, 4.1–4.3 nm, 3.1–3.3 nm, 6.7–6.8 nm, and 7.1–7.4 nm
for the CBD analog in complex with ENOS, MPO, AOPE, APP, ADAM10, and PSEN,
respectively. The range of SASA values was 36.8–53.1 nm2, 65.2–84.6 nm2, 12.9–24 nm2,
3.4–11 nm2, 63–81.9 nm2, and 82.1–111.9 nm2 for the CBD analog in complex with ENOS,
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MPO, AOPE, APP, ADAM10, and PSEN, respectively. As shown in Figure 9, the range
of RMSF values was 0–0.7 nm, 0.1–1.4 nm, 0–0.6 nm, 0–0.6 nm, 0.1–2.9 nm, and 0–0.8 nm
for the CBD analog in complex with ENOS, MPO, AOPE, APP, ADAM10, and PSEN,
respectively.

Figure 6. Molecular docking of identified potential targets to CBD analog: (a) ENOS, (b) MPO,
(c) APOE, (d) APP, (e) ADAM10, and (f) PSEN1. CBD analog is colored magenta and protein is
colored green.

Figure 7. CBD analog-identified potential targets’ interaction plots: (a) ENOS, (b) MPO, (c) APOE,
(d) APP, (e) ADAM10, and (f) PSEN1.
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Figure 8. MD simulation analysis of the system of CBD analog–target complexes over 100 ns:
(a) RMSD; (b) Rg; (c) SASA.
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Figure 9. RMSF analysis of the system of CBD analog–target complexes over 100 ns: (a) ENOS,
(b) MPO, (c) APOE, (d) APP, (e) ADAM10, and (f) PSEN1.

Similar to the CBD-target complexes, the majority of CBD analog–target complexes
showed good stability during MD simulations, as evidenced by RMSD values consistently
below 1 nm, low degrees of fluctuation in Rg and SASA, and RMSF values generally within
the range of 3 nm or lower. However, there were some notable differences compared to the
CBD-target complexes. In the case of the CBD analog-ADAM10 complex, the RMSF value
was higher than the CBD complex, indicating that this complex exhibited slightly more
flexibility in specific residues. The RMSF values of the CBD complex with APOE, APP, and
PSEN1 showed a sharp change at the end of the residue, which may indicate instability. In
contrast, the CBD analog with these targets exhibited stability, indicating that the analogs
might have improved the binding interactions compared to CBD. The CBD analog-APP
complex demonstrated better stability when compared to the CBD-APP complex.

3. Discussion

This study found that CBD and CBD analogs are promising in AD treatment. Our
analysis showed potential protein targets associated with AD, and the computational
generation of CBD analogs has shown potential for enhancing the stability and binding
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interactions with these potential targets. However, we noted a few limitations that need
to be considered. First, we acknowledged the variability in complex stability, as indicated
by high RMSF values at the end of binding site residues for three CBD-target complexes
and one CBD analog–target complex. These variations might indicate potential challenges
in achieving consistent binding stability with all targets, and suggest that future MD
simulations might benefit from longer durations than the commonly employed 100 ns to
capture more comprehensive insights into stability. Additionally, we recognized that our
binding affinity calculations depended on the DeepPurpose model, which may not be the
optimal tool for precisely measuring binding affinity. Further refinement in binding affinity
prediction models could enhance the accuracy of our findings.

Nevertheless, these findings underscore the potential for CBD to play a more expan-
sive role in the development of AD treatments and excited possibilities for CBD analogs as
drug candidates to improve binding interactions and stability with AD-associated protein
targets through various analyses. These results will require further validation through
experimental investigations to ascertain their real-world therapeutic applications and safety
profiles. While CBD analogs have shown promise by satisfying critical drug-likeness prop-
erties, additional considerations should be given to optimizing ADME properties and
bioavailability. In future steps, conducting in vitro and in vivo experiments to validate
the observed effects of CBD and CBD analogs on the identified targets is essential. More-
over, exploring potential therapeutic effects with other AD treatments and investigating
long-term effects are avenues for further research. Therefore, while this study has provided
valuable insights into the potential of CBD and CBD analogs for AD treatment, it repre-
sents just the beginning. Addressing the challenges in optimizing ADME properties and
bioavailability and experimental validation in vitro and in vivo are essential to translating
these findings into practical and effective AD treatments.

4. Materials and Methods
4.1. Potential CBD Target Identification Related to AD

4.1.1. Dataset

We used the drug–target interaction and disease–target association datasets to identify
CBD targets. Our drug–target interaction dataset was built by integrating DrugBank [51]
and Therapeutic Targets Database (TTD) [52]. We only selected pairs with representation,
such as SMILES [53] of drugs and the sequence of targets, to input the drug–target binding
affinity prediction model. As a result, our drug–target interaction dataset was composed of
18,634 drugs and 3435 targets.

We used OMIM as the disease–target association dataset. OMIM has a relationship
between genes and phenotypes, which are information on diseases and symptoms caused
by these genes. We mapped the OMIM ID of genotype data with the UniProt ID [54] of
target data through HUGO Gene Nomenclature Committee (HGNC) [55] because target
names in our drug–target interaction dataset were represented by UniProt ID. As a result,
our disease–target association dataset was composed of 7775 genotype data and 16,619
phenotype data.

4.1.2. Drug–Target Binding Affinity Prediction Method

The drug–target binding affinity prediction method was based on the principle that
drugs with similar molecular structures tend to bind to targets with similar functions
and structures. The workflow for identifying potential CBD targets associated with AD
consisted of three steps. First, we extracted similar molecules of CBD in our drug–target
interaction dataset. Molecular similarity to CBD was calculated using the average of
fingerprint Tanimoto similarities computed with Morgan and MACCS fingerprints via
RDKit [56]. Second, we quantitatively measured the binding potential between CBD
and BD-like molecules’ targets in our drug–target interaction dataset using DeepPurpose
(MPNN [57]-CNN [58] pre-trained model). Third, we filtered candidate targets based on
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binding affinity, calculated on DeepPurpose, and searched targets related to AD among
candidate targets in our disease–target association dataset.

4.2. CBD Analog Generation Using Our Molecular-Constrained Optimization Method

We generated CBD analogs that optimized each identified potential target found
by our target identification method. The workflow for generating CBD analogs was
shown in Figure 10. It consisted of two steps. First, we generated novel molecules, called
CBD analogs, which preserved the Murcko scaffold of CBD [59] and optimized multiple
drug-likeness properties, such as the QED, SAScore, plogP, and logP, using our molecular-
constrained optimization method. In this work, we additionally optimized physicochemical
property filters, such as PAINS, BRENK, NIH, and ZINC filters, to prevent the generation of
toxic and synthetically infeasible subgroups in small molecules [60]. Second, we calculated
the docking score between generated CBD analogs and the target, and then gave the
docking score as feedback from the first step.

Figure 10. Workflow for generating CBD analogs for each target.

4.3. The Results Analysis Method

Molecular Docking

To simulate molecular docking, we prepared small molecules and target proteins using
OpenBabel [61] and Biovia discovery studio visualizer (version 21.20298). The OpenBabel
had converted SMILES of molecules to 3D structures. The Pymol software (version 2.5.7)
removed ligand residues from proteins. To delineate the binding sites of our identified tar-
gets, we employed PrankWeb [62] to predict potential pockets within these target proteins.
Subsequently, we retrieved ligand structures of known inhibitors for these targets from
the Protein Data Bank (PDB) website (https://www.rcsb.org/ (accessed on 23 July 2023))
and referenced previous docking papers. We specifically defined the binding sites from
the multiple pockets generated by PrankWeb by considering those containing binding
residues highlighted in the literature or known inhibitors cataloged in the PDB. We used
the Qvina-W to reveal the interaction between active small molecules and target proteins.
After docking simulation, we visualized the small molecules–protein complex to Biovia
discovery studio visualizer and the interaction site between molecules and ligands to
LIGPLOT (version 2.2) [63].

4.4. Molecular Dynamics Simulation

The MD simulation described the conformational changes and structural safety of
the ligand–protein complex during the binding process. Moreover, they further provided
evidence for the binding mode of small molecules and receptor proteins [64]. We used
CBD and each CBD analog, the top-predicted docking pose with the best docking score
among ten times docking simulations, as the starting point for an MD simulation. We
generated the initial protein complex structure using CHARMM-GUI [65] and performed
MD simulation using GROMACS (version 22.4) [66]. MD simulations were performed with
periodic boundary conditions. The van der Waals forces and Lennard-Jones interactions
involved a cut-off distance of 1.2 Å. The first stage optimized each system structure using
5000 iterations (5 ps) with the steepest descent algorithm. After minimizing the energy,

https://www.rcsb.org/


Int. J. Mol. Sci. 2023, 24, 16013 16 of 19

the system equilibrated the NVT (constant particle number, volume, and temperature)
and the NPT (constant particle number, pressure, and temperature). NVT and NPT were
ensembled for 125 ps. Temperature coupling was set to 1ps and pressure coupling to 5 ps.
Finally, the MD simulation was run for 100 ns under constant pressure and temperature.
We analyzed RMSD, Rg, SASA, and RMSF for complex structures obtained from the 100 ns
MD simulations using GROMACS (version 22.4).
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