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Abstract

Cannabis is the most widely used recreational drug in the United States and regular

use has been linked to deficits in attention and memory. However, the effects of reg-

ular use on motor control are less understood, with some studies showing deficits

and others indicating normal performance. Eighteen users and 23 nonusers per-

formed a motor sequencing task during high-density magnetoencephalography

(MEG). The MEG data was transformed into the time-frequency domain and beta

responses (16–24 Hz) during motor planning and execution phases were imaged sep-

arately using a beamformer approach. Whole-brain maps were examined for group

(cannabis user/nonuser) and time window (planning/execution) effects. As expected,

there were no group differences in task performance (e.g., reaction time, accuracy,

etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral

primary motor cortex compared to nonusers during the execution phase of the motor

sequences, but not during the motor planning phase. Similar group-by-time window

interactions were observed in the left superior parietal, right inferior frontal cortices,

right posterior insular cortex, and the bilateral motor cortex. We observed differ-

ences in the neural dynamics serving motor control in regular cannabis users com-

pared to nonusers, suggesting regular users may employ compensatory processing in

both primary motor and higher-order motor cortices to maintain adequate task per-

formance. Future studies will need to examine more complex motor control tasks to

ascertain whether this putative compensatory activity eventually becomes exhausted

and behavioral differences emerge.
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1 | INTRODUCTION

Cannabis is the most widely used recreational drug in the United States,

with an estimated 49.6 million individuals 12 years of age and older

reporting use in 2020, which is nearly 18% of the population (Substance

Abuse and Mental Health Services Administration, 2020). Among young

adults between the ages of 19–30 years, usage has increased dramati-

cally over the last 10 years, from 29.4% in 2011 to an all-time high of

42.6% of young adults reporting usage in 2021. Regular consumption

has also nearly doubled, from 5.7% of young adults reporting daily usage

in 2011 to 10.8% in 2021. Adults between the ages of 35–50 have dis-

played similar increasing patterns of cannabis consumption, with 12.6%

reported using cannabis in 2011 compared to 24.9% in 2021 (Patrick

et al., 2022). Given these sharp upward trends in the use of cannabis, it

is becoming increasingly important to understand its effects on the brain.

Acute cannabis intoxication is known to cause impairments across

a wide array of cognitive processes. Attention and memory are among

the most well-studied neurocognitive domains with respect to canna-

bis use, and intoxication has long been known to negatively affect

these domains in a dose-dependent manner (Anderson et al., 2010;

D'Souza, Braley, et al., 2008; D'Souza, Ranganathan, et al., 2008;

Ferraro, 1980). On the other hand, findings from studies examining

cognitive domains such as decision making, psychomotor control, and

inhibitory control tend to be more equivocal (Crane et al., 2013;

Kroon et al., 2021). For example, some studies investigating inhibitory

control have found that in tasks requiring participants to inhibit move-

ment that is already ongoing, such as in the stop-signal task (Logan

et al., 1984), cannabis intoxication causes a dose-dependent reduction

in participants' ability to stop (Kroon et al., 2021; McDonald

et al., 2003; Metrik et al., 2012). By contrast, other studies have found

that cannabis may not impair inhibition in the context of inhibiting

before a response is initiated (e.g., in go/no-go tasks; Crane

et al., 2013; Donders, 1969; Kroon et al., 2021; McDonald

et al., 2003).

Interestingly, the cognitive consequences of regular cannabis

use, the definition of which can vary widely from study to study, is

less understood with individual studies frequently reporting conflict-

ing results. Such inconsistent findings may reflect the inherent het-

erogeneity of real-world cannabis use (i.e., type, dose, frequency,

polysubstance use, etc.) or the multitude of different methods and

tests used in this literature. Meta-analyses of the neurocognitive

effects of long-term cannabis use have generally come to the con-

sensus that cognitive deficits are detectable and persist after acute

use (Duperrouzel et al., 2020; Schreiner & Dunn, 2012). These meta-

analyses have demonstrated significant effects across several neuro-

cognitive domains, with learning, memory, attention, and executive

function showing the strongest residual deficits in regular cannabis

users. Although less robust, motor and processing speed domains

have also been frequently identified as showing residual effects of

cannabis use (Duperrouzel et al., 2020). However, the literature is

considerably sparser with respect to the effects of regular use on

psychomotor function, though some studies have found impairments

in cerebellum-dependent functions, such as motor adaptation and

learning in chronic users (Bosker et al., 2013; Herreros et al., 2019).

Additionally, one functional magnetic resonance imaging (FMRI)

study found decreased BOLD activity in the primary motor, supple-

mentary motor, and anterior cingulate cortices in chronic users dur-

ing a finger tapping task (Pillay et al., 2008). Regular use may also

lead to addiction, which is thought to be at least partially attributable

to deficits in brain regions that serve behavioral inhibition (Everitt &

Robbins, 2005; Goldstein & Volkow, 2002).

While studies of regular cannabis use have shown deficits in the

motor domain, far less is known about the underlying brain mecha-

nisms. The neurophysiology of motor control has been extensively

studied in healthy adults and children. These studies have shown that

prior to and during movement, there is a robust event-related desyn-

chronization (ERD) in the beta frequency band (16–24 Hz; β-ERD)

within the motor cortex contralateral to the movement (and to a

lesser magnitude, the ipsilateral motor cortex), which is followed by

a post-movement beta rebound (PMBR) that peaks after movement

termination and is located slightly posterior to the β-ERD (Heinrichs-

Graham et al., 2016, 2018; Heinrichs-Graham, Kurz, et al., 2014;

Jurkiewicz et al., 2006; Wiesman et al., 2020; Wilson et al., 2010). The

amplitude of the β-ERD changes as a function of difficulty, such that

as task complexity increases, the magnitude also increases (Heinrichs-

Graham & Wilson, 2015; Pfurtscheller & Lopes da Silva, 1999). The

β-ERD has been repeatedly linked to motor planning and execution,

whereas the PMBR is thought to reflect active inhibition of the motor

cortex following movement termination and/or sensory feedback to

the motor cortices (Arpin et al., 2017; Embury et al., 2019; Heinrichs-

Graham, Kurz, et al., 2017; Hoffman et al., 2019; Ng et al., 2011;

Pfurtscheller & Lopes da Silva, 1999; Tzagarakis et al., 2010). Finally,

there is a movement-related gamma synchronization (70–90 Hz) that

coincides with movement onset, is highly transient, and typically cen-

tered on the primary motor cortex following mototopic organization

(Spooner, Arif, et al., 2021; Spooner & Wilson, 2022, 2023; Wiesman

et al., 2020). This response is thought to reflect the motor execution

signal but is not observed in all tasks (Heinrichs-Graham et al., 2020;

Wiesman et al., 2020, 2021).

With the dramatic increase in cannabis use over the last decade,

understanding the impact on human brain function has never been

more important. Herein, we focus on identifying whether regular

cannabis use affects motor planning and execution related neural

oscillations in otherwise healthy adults. To this end, we used magne-

toencephalographic (MEG) imaging and time series analysis to exam-

ine the effects of regular cannabis use on the neural oscillatory

dynamics serving the planning and execution of motor sequences in

adults who regularly use cannabis and a demographically matched

nonuser control group. We hypothesized that cannabis users would

exhibit stronger β-ERD responses during the planning and/or execu-

tion of motor sequences compared to controls, and that these stron-

ger responses would reflect compensatory activity that enables

cannabis users to perform at normal levels on our relatively simple

sequencing task.
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2 | METHODS

2.1 | Participants

Forty-five participants between the ages of 20–59 years were

recruited for this study, including 21 regular cannabis users (mean

age: 40.48 [SD: 9.80], range: 25–57 years) and 24 nonuser controls

(mean age: 41.21 [SD: 11.22], range: 20–59 years). Potential partici-

pants were recruited from the Omaha, Nebraska metropolitan area

through flyers, social media advertisements, and from participation in

other studies in our laboratory. Participants were matched on age,

sex, race, and Alcohol use disorder identification test (AUDIT) scores.

Cannabis users were required to have used cannabis at least three

times per week for three or more years, and nonusers were required

to have never used cannabis or other illicit substances other than lim-

ited past experimental use, nor have used any illicit substances within

the past 3 months. Substance use patterns were evaluated by inter-

view using the NIDA Quick Screen, NIDA Modified Alcohol, Smoking

and Substance Involvement Screening Test (NM-ASSIST), and the

Structured Clinical Interview for DSM-5 Research Version- Module E:

Substance Use Disorders (SCID-5-RV). Self-administered surveys

were also used, including the Daily Sessions, Frequency, Age of Onset,

and Quantity of Cannabis Use Inventory; Cannabis Use Disorder Iden-

tification Test (CUDIT); and AUDIT. Additionally, participants under-

went a urinalysis to identify the use of illicit drugs. Exclusion criteria

for the study included any diagnosed neurological or psychiatric dis-

order, any medical illness associated with CNS dysfunction, history of

head trauma, current substance use disorder other than cannabis, the

presence of metallic implants that could impede MEG or magnetic res-

onance imaging (MRI) data acquisition, and pregnancy. All study pro-

cedures were approved by the local Institutional Review Board and all

participants provided written informed consent prior to participating.

2.2 | Experimental paradigm

We used a motor paradigm designed by Heinrichs-Graham and Wilson

(2016) in which participants were instructed to place their right hand

on a button pad and view a fixation cross for 3750 ms during MEG

recording. Three numbers, each corresponding to a digit on the hand

(i.e., “1” for index, “2” for middle, etc.), were shown on the screen for

500 ms. The numbers on the screen changed color, indicating the cue

to move, and participants then had 2250 ms to tap the sequence with

the corresponding fingers. After the 2250 ms, the numbers disap-

peared, leaving only the fixation cross on the screen. Following of

period of 3750 ms, the next three numbers appeared (Figure 1a). The

experiment consisted of 160 pseudo-randomized trials resulting in

about 16 min of total recording time.

2.3 | MEG and MRI data acquisition

Functional MEG data were collected using an Elekta/MEGIN MEG

system (Helsinki, Finland) equipped with 306 sensors (204 planar

gradiometers, 102 magnetometers) using a 1 kHz sampling rate and

an acquisition bandwidth of 0.1–330 Hz in a one-layer magnetically

shielded room with active shielding engaged. Prior to MEG acquisi-

tion, four coils were attached to the participant's head and localized

along with fiducial and scalp surface points using a three-dimensional

digitizer (FASTRAK 3SF0002, Polhemus Navigator Sciences, Colches-

ter, Vermont). Once the participants were positioned for MEG record-

ing, an electric current with a unique frequency label (e.g., 322 Hz)

was fed to each of the four coils, thus inducing a measurable magnetic

field and thereby allowing each coil to be localized in reference to the

MEG sensor array throughout the recording session. Structural

T1-weighted images were collected using a Siemens Prisma 3.0T

scanner with a 64-channel head coil (TR: 2.3 s; TE: 2.98 ms; field of

view: 256 mm; slice thickness: 1 mm with no gap; voxel size: 1 mm3).

Each participant's MRI data underwent AC/PC alignment, inhomoge-

neity correction, segmentation, surface reconstruction, and transfor-

mation into standardized space.

2.4 | Time-frequency transformation and statistics

MEG data were subjected to environmental noise reduction and cor-

rected for head motion using the signal space separation method with

a temporal extension (Taulu & Simola, 2006). Eye blinks and cardiac

artifacts were removed from the data using signal space projection

(SSP), which was accounted for during source reconstruction

(Uusitalo & Ilmoniemi, 1997). The time series was then divided into

6400 ms epochs, including a baseline window from �2250 to

�1750 ms, with 0 ms being defined as movement onset. Epochs con-

taining artifacts were then rejected based on a fixed threshold method

that was set per participant and supplemented with visual inspection.

Briefly, in MEG, the raw signal amplitude is strongly affected by the

distance between the brain and the MEG sensor array, as the mag-

netic field strength falls off sharply as the distance from the current

source (i.e., brain) increases. To account for this source of variance

across participants, as well as other sources of variance, we used an

individualized threshold based on the signal distribution for both

amplitude and gradient to reject artifacts. There were no differences

in the number of accepted trials by group (t39 = �.728, p = .607).

Artifact-free epochs were transformed into the time-frequency

domain using complex demodulation (Kovach & Gander, 2016;

Papp & Ktonas, 1977). The resulting spectral power estimations per

sensor were averaged across trials, generating time-frequency plots of

mean spectral density. The sensor-level data were then normalized

per time-frequency bin using the respective bin's baseline power,

which was calculated by averaging the power during the �2250 to

�1750 ms baseline period. The specific time-frequency bins used for

source reconstruction were determined using a mass univariate

approach based on the general linear model. To reduce the risk of

false-positive results while maintaining reasonable sensitivity, a two-

stage procedure was followed to control for Type-1 error. In the first

stage, two-tailed paired-sample t-tests against baseline were con-

ducted on each data point, and the output spectrogram of t-values

was thresholded at p < .05 to define time-frequency bins containing
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potentially significant oscillatory deviations across all participants. In

stage two, time-frequency bins that survived the threshold were clus-

tered with temporally and/or spectrally neighboring bins that were

also above the threshold (p < .05), and a cluster value was derived by

summing the t-values of all data points in the cluster. Nonparametric

permutation testing was then used to derive a distribution of cluster

values, and the significance level of the observed clusters (from stage

1) were tested directly using this distribution (Ernst, 2004; Maris &

Oostenveld, 2007) For each comparison, 1000 permutations were

computed. Based on these analyses, the time-frequency windows that

contained significant oscillatory events across all participants were

subjected to the beamforming analysis. For further details on our data

processing pipeline, see Wiesman and Wilson (2020).

2.5 | MEG source imaging and virtual sensor

analyses

Oscillatory neural responses were imaged using the dynamic imag-

ing of coherent sources beamformer (Gross et al., 2001; Van Veen

et al., 1997), which applies spatial filters in the time-frequency

domain to calculate voxel-wise source power for the entire brain

volume. The single images were derived from the cross-spectral

densities of all combinations of MEG gradiometers averaged over

the time-frequency range of interest and the solution of the for-

ward problem for each location on a grid specified by input voxel

space. Following convention, we computed noise-normalized

source power for each voxel per participant using active (i.e., task)

and passive (i.e., baseline) periods of equal duration and bandwidth

(Hillebrand et al., 2005) at a resolution of 4.0 � 4.0 � 4.0 mm. Such

images are typically referred to as pseudo-t maps, with units

(pseudo-t) that reflect noise-normalized power differences

(i.e., active versus passive) per voxel. MEG preprocessing and imag-

ing used the Brain Electrical Source Analysis (BESA V7) software.

To assess the neuroanatomical basis of the significant oscillatory

responses identified through the sensor-level analysis, grand-

average whole-brain maps were computed.

To examine the temporal dynamics of neural activity, virtual sen-

sor data were extracted from the peak voxel in the grand-averaged

image by applying the sensor weighting matrix derived from the for-

ward solution to the preprocessed signal vector. Following time-

frequency domain transformation of these virtual sensor data, the

envelope of spectral power was computed for the frequency range

used in the beamformer analysis (i.e., 16–24 Hz, see below), yielding

F IGURE 1 Task paradigm and behavioral performance. (a) Participants fixated on a crosshair for 3750 ms. After this period, a sequence of

three numbers, each corresponding to a digit on the right hand, was displayed on the screen for 500 ms. Numbers then changed color, indicating

the cue to move, with the sequence disappearing after 2250 ms (i.e., the participant had 2250 ms to complete the sequence). (b) Behavioral

results for both groups. Percentage correct (accuracy) is shown on the left, reaction time (time between cue to move and movement onset) in the

middle, and movement duration (time to complete the sequence) on the right. There were no main effects of group for accuracy (p = .487),

reaction time (p = .631), or movement duration (p = .707).
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a time series of beta band amplitude for the entire epoch. These beta

band time series were then averaged over time windows of interest

(i.e., planning and execution) for group-wise comparisons.

2.6 | Statistical analyses and software

All statistical analyses, except whole-brain models, were performed

using IBM SPSS Statistics (IBM Corp. Released 2017. IBM SPSS Sta-

tistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Data

plots were created using ggplot2 (Wickham, 2016). Two-sample t-

tests were used to examine group differences in reaction time,

movement duration, and accuracy. Analysis of the virtual sensor

time series used a mixed-model Analysis of variance (ANOVA) of

the relative amplitude time series prior to and following movement

execution (model = group-by-window). Whole-brain statistics for

the oscillatory maps were performed using the MATLAB-based

Multivariate and Repeated Measures toolbox (McFarquhar

et al., 2016). For whole-brain statistics, we used a mixed-model

ANOVA, with group (cannabis users versus nonusers) as a between-

subjects factor and time window (planning versus execution) as a

within-subjects factor. Main effects (i.e., group and window) and

interaction effects were examined using a threshold of p < .001, and

adjusted for multiple comparisons using a spatial extent threshold

(i.e., cluster restriction; k = 8 contiguous voxels) based on the the-

ory of Gaussian random fields (Poline et al., 1995; Worsley

et al., 1996, 1999). Finally, to reduce the impact of outliers on statis-

tical analyses, participants with values 2.5 SDs above or below their

respective group mean were excluded.

3 | RESULTS

Four participants were excluded from all analyses due to poor perfor-

mance and/or noisy MEG data. The remaining 41 participants were

between the ages of 20 and 59 years and included 18 regular canna-

bis users (mean age: 41.56 [SD: 9.77) years] and 23 nonuser controls

(mean age: 40.78 [SD: 11.27] years). Both groups scored within the

normal range on the Beck Depression Inventory. Participants were

matched on age, sex, race, and AUDIT scores (Table 1).

3.1 | Behavioral performance

To assess task performance, two-sample t-tests were conducted on

the accuracy, reaction time, and movement duration data (i.e., the time

from the first button press to the last in a single trial). The results indi-

cated that the two groups did not statistically differ in accuracy (users:

M = 86.67% [SD = 0.091]; nonusers: M = 84.51 [SD = 0.103];

p = .487), reaction time (users: M = 460.150 [SD = 129.075]; nonu-

sers: M = 495.669 [SD = 142.241]; p = .414), nor movement duration

(users: M = 759.602 [SD = 135.615]; nonusers: M = 737.759

[SD = 242.288]; p = .734). These data are shown in Figure 1b.

3.2 | Sensor-level analysis

Sensor-level time-frequency analyses across all participants revealed a

significant peri-movement β-ERD response in sensors near the left

primary motor cortex (Figure 2a). This peri-movement β-ERD had a

TABLE 1 Group-wise demographic, substance use, and behavioral data.

Cannabis users (n = 18) Nonusers (n = 23) p

Demographics

Age, mean (SD) 41.56 (9.77) 40.78 (11.27) .819

Sex (M/F) 9/9 16/7 .202

Race (White/Black/other) 15/1/2 17/3/3 .674

Substance use

CUDIT, median (range) 11 (4–22) – –

AUDIT, median (range) 4 (0–14) 2 (0–9) .159

Cannabis SIS, median (range)a 9 (4–17) – –

Frequency of use, count (2–4� per week/5–7�

per week/more than daily)a
2/6/9 – –

Last use, count (day before/day of scan)a 14/3 – –

Behavioral performance

Accuracy, % (range) 86.67 (46.25–100) 84.51 (47.50–98.75) .487

Mean reaction time, ms (SD) 490.79 (135.13) 512.03 (146.71) .414

Mean movement duration, ms (SD) 771.43 (154.64) 747.13 (250.57) .734

Abbreviations: AUDIT, Alcohol Use Disorder Identification Test; CUDIT, Cannabis Use Disorder Identification Test; Cannabis SIS, Cannabis Substance

Involvement Score from NIDA Modified Alcohol, Smoking, and Substance Involvement Screening Test.
aOne participant declined to respond.

WARD ET AL. 6515

 10970193, 2023, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26527, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



bandwidth of 16–24 Hz, began around 500 ms prior to movement

onset, and lasted for approximately 1000 ms (i.e., �500 to 500 ms;

p < .0001, corrected). It is important to note that a robust synchroni-

zation was evident after the ERD (i.e., the post-movement beta

rebound; PMBR). This PMBR was not subjected to source reconstruc-

tion because it was tightly yoked to the termination of movement,

and our study focused on motor planning and execution processes.

3.3 | Beamforming and virtual sensor analysis

To identify the anatomical regions generating the β-ERD response, we

imaged the significant time-frequency window from the sensor-level

analysis. Since our baseline was only 500 ms long and we were inter-

ested in distinguishing motor planning from execution related proces-

sing, we imaged the β-ERD in two separate windows (i.e., motor

planning = �500 to 0 ms; execution = 0 to 500 ms). This revealed a

robust response in the contralateral primary motor cortex across both

groups and time windows, with the peak voxel of activation occurring

at the same voxel coordinates in both the planning and execution win-

dows (Figure 2b). To examine the temporal dynamics, virtual sensor

time series were extracted from the peak voxel in the grand-averaged

image per participant. These time series were probed for group differ-

ences per time window using a mixed-model ANOVA (Figure 3). The

results revealed a group-by-window interaction, such that users had

stronger beta oscillations in the execution phase relative to nonusers,

while the two groups did not differ during motor planning

(F1,39 = 6.612, p = .014). There was also a main effect of window

such that independent of group, the participants had stronger beta

F IGURE 2 Time-frequency spectrogram and source reconstruction. (a) Grand-averaged time-frequency spectrogram across all participants

from a sensor near the left sensorimotor cortex (i.e., MEG0432). Time (ms) is displayed on the x-axis with frequency (Hz) on the y-axis. Signal

power is expressed as a percent change from baseline. Before and during movement, there was a strong beta event-related desynchronization

(ERD; 16–24 Hz), followed by a post-movement beta rebound (PMBR). The white box displays the two time-frequency bins selected for

beamforming analyses (planning: �500 to 0 ms; execution: 0–500 ms; both at 16–24 Hz) to isolate the motor planning and execution phases.

Note that we did not image the PMBR because it is tightly linked to motor termination, and our study was focused on motor planning and

execution processes. (b) Grand-averaged beamformer image across both time windows and groups showed that the beta ERD was strongest in

the contralateral primary motor cortices. The peak voxel was located at the same coordinates in the grand-averaged image computed using the

planning and execution images separately, as well as combined. Voxel time series data were extracted using the peak voxel in this grand-

averaged map.

F IGURE 3 Time series of the β-ERD response in the primary

motor cortex. Time series of the peak β-ERD voxel, separated by

group. The shaded area indicates the two β-ERD time windows, with

the motor planning window (�500 to 0 ms) in light gray and the

motor execution window (0–500 ms) shown in darker gray. The

asterisk (*) denotes the significant main effect of window (p = .002)

and group-by-window interaction (p = .014). The inset in the bottom

left shows the grand-averaged β-ERD beamformer image; the time

series was extracted from the peak voxel, which was within the

primary motor cortex contralateral to movement.
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oscillations in the execution phase (F1,39 = 11.041, p = .002). Of note,

there was no main effect of group on the overall strength of beta

oscillations (F1,39 = 1.6255, p = .210). Further, there were no group

differences in the latency of the primary motor responses (β-ERD

latency: F1,39 = 1.588, p = .215; PMBR latency: F1,39 = 1.012,

p = .321) (Figure 2a).

Next, we conducted whole-brain analyses to determine whether

brain regions beyond the primary motor cortex differed between

groups. Specifically, we conducted a whole-brain mixed-model

ANOVA, with group and time window as factors. This revealed a

group-by-window interaction effect across multiple brain regions,

with significant peaks in the left superior parietal cortices, right infe-

rior frontal gyrus, and the right posterior insula (p < .001; Figure 4), in

addition to the primary motor cortices. In each of these regions, users

exhibited stronger beta oscillations (i.e., more robust decreases in beta

power) during the movement execution phase relative to nonusers,

with the beta oscillatory amplitude not differing between groups dur-

ing the planning phase. Additionally, there were significant main

effects of window in all three peaks (parietal: F1,38 = 4.144, p = .049;

frontal: F1,38 = 52.010, p < .001; insula: F1,38 = 74.068 p < .001) such

that independent of group, participants exhibited stronger beta oscil-

lations in the execution phase relative to the planning phase.

4 | DISCUSSION

In this study, we used a motor sequence paradigm and MEG imaging

to study the effect of regular cannabis use on complex motor control.

The strength of the motor β-ERD has been shown to be modulated by

development (Fung et al., 2022; Gaetz et al., 2010; Heinrichs-Graham

et al., 2018) and to increase with age during adulthood (Heinrichs-

Graham & Wilson, 2016; Rossiter et al., 2014; Trevarrow et al., 2019;

Wilson et al., 2010). The motor-related β-ERD is also known to be

altered by healthy aging, as well as several pathologies including cere-

bral palsy, stroke, Parkinson's disease, neuroHIV, psychosis, and

amyotrophic lateral sclerosis (Bizovičar et al., 2014; Heinrichs-

Graham, Santamaria, et al., 2017; Heinrichs-Graham, Wilson,

et al., 2014; McCusker et al., 2021; Peter et al., 2022; Shiner

et al., 2015; Spooner et al., 2023; Wilson et al., 2013, 2019; Wilson,

Slason, et al., 2011). Our key findings expand upon this literature by

F IGURE 4 Group-by-window interaction effect. Cannabis users exhibited stronger β-ERD responses during the execution phase compared to

nonusers in the (a) left superior parietal cortices, (b) right inferior frontal cortices, (c) right posterior insula, and the left primary motor cortices

(p < .001, corrected). The groups did not differ during the motor planning phase. (Top) Rain cloud plots showing peak voxel pseudo-t values per

participant from the region with the green circle in the images below each plot. Users are shown in green and nonusers in blue. The x-axis is

separated into the planning and execution windows (i.e., �500 to 0 and 0 to 500, respectively), and the y-axis displays pseudo-t values. (Bottom)

Statistical maps showing the group-by-window interaction effect. In addition to the three regions noted above, significant clusters were found in

the right (ipsilateral) precentral gyrus and the left (contralateral) precentral gyrus.
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demonstrating that regular cannabis users exhibit stronger motor-

related β-ERD responses in the primary motor cortices and multiple

higher-order motor regions compared to nonusers. Further, these dif-

ferences were observed only during the motor execution phase and

not motor planning. These findings and their implications are dis-

cussed below.

Our most interesting findings were likely the altered dynamics in

the primary motor cortex of the cannabis users. Specifically, cannabis

users exhibited a significant increase in beta oscillatory strength dur-

ing the motor execution window, which appeared to emerge shortly

before movement onset and then was sustained through the entire

execution period. Such data indicates heightened activity within the

primary motor cortex, which is known to be the main output center

for the cortical-spinal tract. While we did not observe any motor per-

formance differences between groups, numerous past studies have

shown that the amplitude of the β-ERD response is closely related to

motor performance (Kurz et al., 2014, 2020; Spooner et al., 2021;

Wiesman et al., 2020; Wilson, Fleischer, et al., 2011). Additionally,

studies have shown that patients with Parkinson's disease, as well as

cerebral palsy, exhibit weakened β-ERD responses (Heinrichs-Graham,

Wilson, et al., 2014; Trevarrow et al., 2022). The strength of such beta

oscillations is at least partially driven by activity in γ-aminobutyric acid

(GABA) interneurons, with MEG studies linking increased sensorimo-

tor cortex GABA concentration with stronger β-ERDs (Hall

et al., 2011; Muthukumaraswamy et al., 2013). Further, reduced

GABA concentrations in the motor cortex of Parkinson's patients has

been shown to predict increased symptom severity (van Nuland

et al., 2020); thus, it follows that as symptoms become more severe,

the corresponding decrease in GABA concentration may play a role in

the reduction of β-ERD strength. Further, using the same sequencing

task as in our study, Heinrichs-Graham and Wilson (2016) demon-

strated stronger β-ERD responses in healthy aging. These increases in

β-ERD strength were thought to be compensatory in nature as the

baseline beta amplitude was also significantly elevated in older adults,

thereby requiring a stronger β-ERD to reach a similar level of beta

prior to initiating movement (Heinrichs-Graham & Wilson, 2016;

Wilson et al., 2014). Thus, in our study, such increased beta oscillatory

activity during execution may have enabled the users to maintain per-

formance levels similar to controls. Future studies using more complex

motor tasks may be better able to discern such effects and identify

declines in performance related to cannabis use, although caution is

warranted as differences in performance alone are frequently associ-

ated with oscillatory differences in the absence of neuropathology.

Motor-related neural activity involves the coordinated efforts of

the primary motor cortices and several higher-order motor regions

(Ball et al., 1999; Georgopoulos, 1991; Heinrichs-Graham et al., 2016;

Sakata et al., 2017). Some key higher-order motor regions include

those in the frontal cortex, supplementary motor area (SMA), premo-

tor, and parietal regions (Ricci et al., 2019; Wendiggensen

et al., 2022). Though literature regarding the contributions of the insu-

lar cortex during motor actions is scant, this region has been impli-

cated in various aspects of motor planning and execution (Beurze

et al., 2007; Caliandro et al., 2021; Olausson et al., 2002; Sakata

et al., 2017). Results from our whole-brain analyses showed that can-

nabis users exhibited stronger beta oscillations relative to nonusers

during the execution phase in the frontal, parietal, motor, and insular

cortices. In contrast, the two groups did not differ during the motor

planning phase. These results suggest that users must recruit more

higher-order neural resources during the execution phase to accu-

rately perform the motor sequencing task. In regard to the mecha-

nisms, local GABA concentrations have been shown to play a role in

generating beta oscillations in the motor cortex (Cheyne, 2013; Gaetz

et al., 2011). Studies investigating healthy aging have linked increases

in GABAergic inhibition with stronger β-ERD responses (Rossiter

et al., 2014), and others have linked cannabidiol, the primary non-

psychoactive component of the Cannabis sativa plant (Bielawiec

et al., 2020), with increases in GABAergic transmission (Kaplan

et al., 2017; Musella et al., 2009; Pretzsch et al., 2019). Thus, it follows

that regular consumption of cannabis may lead to increased GABAer-

gic transmission, which may be responsible for these stronger beta

oscillations across multiple cortical regions serving motor control.

These types of region-specific oscillatory changes in chronic cannabis

users have been demonstrated previously by our laboratory and

others (Arif et al., 2021; Schantell et al., 2022; Springer et al., 2021;

Weyrich et al., 2023), but our current findings are the first to extend

this literature into motor-related beta oscillations.

Taken together, our results demonstrate that though regular can-

nabis users are able to perform the current motor sequencing task at

the same level as nonuser controls, the two groups are quite different

neurologically. These differences may reflect compensatory proces-

sing or be precursors of behavioral deficits that may emerge in the

future (Rangel-Pacheco et al., 2021). These compensatory mecha-

nisms, though adequate for this relatively simple sequencing task, may

break down in real-world situations where more complex motor con-

trol is needed. For example, presumably, nonusers would exhibit

stronger beta oscillations during more complex motor tasks

(Heinrichs-Graham & Wilson, 2015) and such increases may not be

possible in users due to limitations in the dynamic range of cortical

beta activity (Heinrichs-Graham & Wilson, 2016; Wilson et al., 2014).

More broadly, compensatory activity through increased neural oscilla-

tions would likely be governed by task difficulty and may break down

in more real-life motor sequence scenarios.

Before closing, it is important to acknowledge the limitations of

this study, as well as directions for future work. Even in states where

recreational cannabis is legal, government regulation has been largely

unable to control the potency or percentage of tetrahydrocannabinol

(THC) in cannabis (Pacula et al., 2022), and thus we were unable to

control for the amount, isoform, and method of consumption of THC

in our user group. To mitigate this limitation, we had all participants

complete a detailed questionnaire and undergo structural clinical

interviews about their use patterns. Future studies could consider a

subgroup approach that would allow group comparisons among those

using different types and cannabis doses, but this would necessitate

much larger enrollment numbers, which could create feasibility con-

cerns. Future studies may also benefit from using tasks with higher

cognitive demands in an attempt to create a more “naturalistic” design
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to elucidate the dynamics of the compensatory mechanisms described

in this work, and to identify if and at what point these compensatory

processes become exhausted. The motor complexity task used in the

current study was only moderately demanding, possibly explaining the

largely equivalent behavioral performance across the two groups.

Future studies should also use other motor tasks that are known to

elicit motor-related gamma responses (e.g., Spooner & Wilson, 2022),

as such high-frequency responses may be associated with unique def-

icits in cannabis users (e.g., Arif et al., 2021). Finally, caution is war-

ranted in considering the underlying mechanisms. While our

interpretation of the results focuses on the potential impact of canna-

bis use on the neural oscillations serving motor control, it is also possi-

ble that these differences are more indicative of risk factors for

developing cannabis use disorders. Determining the precise direction-

ality will require longitudinal designs, with cannabis-naïve individuals

being scanned prior to initiating cannabis use and after having regu-

larly used for multiple years, and should be a goal for future work.

Despite these limitations, the current study clearly indicates that regu-

lar cannabis use is associated with alterations across multiple brain

regions involved in motor control and that these alterations emerge

most clearly during the execution of motor sequences and not their

planning.
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