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Abstract  47 

Working memory is an executive function that orchestrates the use of limited amounts of 48 

information, referred to as working memory capacity, in cognitive functions. Cannabis exposure 49 

impairs working memory in humans; however, it is unclear if Cannabis facilitates or impairs 50 

rodent working memory and working memory capacity. The conflicting literature in rodent 51 

models may be at least partly due to the use of drug exposure paradigms that do not closely 52 

mirror patterns of human Cannabis use. Here, we used an incidental memory capacity paradigm 53 

where a novelty preference is assessed after a short delay in spontaneous recognition-based tests. 54 

Either object or odor-based stimuli were used in test variations with sets of identical (IST) and 55 

different (DST) stimuli (3 or 6) for low- and high-memory loads, respectively. Additionally, we 56 

developed a human-machine hybrid behavioral quantification approach which supplements 57 

stopwatch-based scoring with supervised machine learning-based classification. After validating 58 

the spontaneous IST and DST in male rats, 6-item test versions with the hybrid quantification 59 

method were used to evaluate the impact of acute exposure to high-THC or high-CBD Cannabis 60 

smoke on novelty preference. Under control conditions, male rats showed novelty preference in 61 

all test variations. We found that high-THC, but not high-CBD, Cannabis smoke exposure 62 

impaired novelty preference for objects under a high-memory load. Odor-based recognition 63 

deficits were seen under both low-, and high-memory loads only following high-THC smoke 64 

exposure. Ultimately, these data show that Cannabis smoke exposure impacts incidental memory 65 

capacity of male rats in a memory load-dependent, and stimuli-specific manner. 66 

  67 
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Significance Statement 68 

Incidental memory refers to the limited amount of information encoded by chance during 69 

behavior. How psychoactive drug exposure affects incidental memory is poorly understood, 70 

particularly for Cannabis exposure. To address this question, we validated object- and odor-71 

based spontaneous incidental memory tests in male rats using a novel human-machine hybrid 72 

scoring method. Using these tests, we show exposure to high-THC, but not high-CBD, Cannabis 73 

smoke impairs incidental memory under high-memory loads in object-based tests and both high- 74 

and low-memory loads in the odor-based tests. Our results highlight cannabinoid-specific effects 75 

on incidental memory in male rats using a validated Cannabis smoke exposure method, which 76 

have broad implications for the impacts of human use of Cannabis on cognition. 77 

  78 
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Introduction 79 

Working memory is an executive function that orchestrates the use of limited amounts of 80 

information in cognitive functions like learning and memory (Constantinidis & Klingberg, 2016; 81 

D’Esposito et al., 1995; Eriksson et al., 2015; Wilhelm et al., 2013). In humans, Δ9-82 

tetrahydrocannabinol (THC), the main psychoactive constituent of Cannabis, impairs working 83 

memory following both acute and chronic Cannabis exposure, likely by action at the 84 

cannabinoid type 1 receptor (Adam et al., 2020; Bossong et al., 2012; Cousijn et al., 2014; Crane 85 

et al., 2013; Curran et al., 2002; D’Souza et al., 2012; Ilan et al., 2004; Ligresti et al., 2016; 86 

Owens et al., 2019). The working memory impairments produced by Cannabis have been 87 

interpreted as resulting from disruptions of the active maintenance, limited capacity, interference 88 

control, and flexible updating subconstructs of working memory (Barch & Smith, 2008). In 89 

contrast, studies in rodents demonstrate both THC-mediated impairments and improvements in 90 

working memory function (Barnard et al., 2022; Blaes et al., 2019; Bruijnzeel et al., 2016; de 91 

Melo et al., 2005; Goonawardena et al., 2010; Varvel et al., 2001). These inconsistent findings 92 

may be attributable to differences in the behavioral tasks used, cannabinoid dosage, exposure 93 

timelines, and routes of administration (Baglot et al., 2021; Hložek et al., 2017; Klausner & 94 

Dingell, 1971; Nguyen et al., 2016; Wiley et al., 2021). Importantly, previous rodent studies 95 

have not directly assessed the effects of Cannabis exposure on working memory capacity. 96 

Working memory capacity is essential for higher cognitive operations critical to everyday 97 

function and can be impaired in disorders like schizophrenia and Parkinson’s disease (Goldman-98 

Rakic, 1999; Piskulic et al., 2007; Gold et al., 2018). 99 

A shortcoming in rodent literature is that traditional rodent working memory capacity 100 

tests mimic n-back or recall working memory tests used in humans and require a long training 101 

period, learned rules, and considerable experimental involvement (Barnard et al., 2022; Cowan, 102 

2010; Daneman & Carpenter, 1980; Dudchenko, 2004; Dudchenko et al., 2013; Kirchner, 1958; 103 

Oomen et al., 2013; Scott et al., 2020; Vorhees & Williams, 2014; Wilhelm et al., 2013). 104 

Spontaneous recognition tests circumvent these weaknesses by relying on rodents’ innate novelty 105 

seeking behavior as shown by preferential interaction with a novel stimulus after a delay 106 

(Broadbent et al., 2004; Ennaceur & Aggleton, 1994; Ennaceur & Delacour, 1988; Sannino et al., 107 

2012). These tests measure incidental memory capacity, which is the limited amount of 108 

information that is encoded by chance during spontaneous exploration. It is noteoworthy that 109 
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incidental memory capacity differs from working memory capacity, as information is encoded 110 

without the intent for future use. Novelty preference can be used to assess incidental memory 111 

capacity in mice under low- and high-memory loads through the Identical and Different Objects 112 

Tasks, respectively (Torromino et al., 2022; Olivito et al., 2016, 2019; Sannino et al., 2012). 113 

Therefore, the first goal of the present study was to validate these tests in male rats using the 114 

Identical Stimuli Test (IST) and Different Stimuli Test (DST) with objects. Our second goal was 115 

to develop and validate olfactory versions of these tests to evaluate incidental memory for odors. 116 

We chose to perform this initial validation with male rats given the recently reported sex 117 

differences in the neural circuitry underlying performance of the tests with objects in mice 118 

(Torromino et al., 2022). 119 

For all test variations, novelty preference was inferred by measuring the relative amount 120 

of interaction behavior exhibited at novel and previously experienced stimuli after a short delay. 121 

Typical approaches to quantifying rodent behavior for spontaneous interaction tests are generally 122 

laborious, prone to human subjectivity, and lack objective analysis steps that can be verified and 123 

reproduced (Anderson & Perona, 2014). Recent advances in automated behavioral analysis have 124 

enabled researchers to obtain a detailed and objective record of a diversity of complex behaviors 125 

across species (Cui et al., 2021; Newton et al., 2023; Nilsson et al., 2020; Slivicki et al., 2023; 126 

Winters et al., 2022). Here, we automatically quantified interaction events using a supervised 127 

machine learning-based analysis approach with DeepLabCut (Mathis et al., 2018) and Simple 128 

Behavioral Analysis (SimBA; Nilsson et al., 2020), then upon manual inspection of supervised 129 

machine learning predictions, sub-optimal predictions were supplemented by human stopwatch 130 

scoring to form a human-machine hybrid scoring method. By automatically predicting 131 

interaction events frame-by-frame, several secondary behavioral measures, including approach 132 

latency and interaction bout count, were easily calculated and provide a more complete 133 

characterization of novelty preference to infer incidental memory capacity. To our knowledge, 134 

the present study is the first demonstration of supervised machine learning-based behavioral 135 

analysis in the context of a spontaneous interaction-based test. 136 

Using validated spontaneous tests and the hybrid scoring method, our second goal was to 137 

assess the effects of Cannabis smoke exposure on novelty preference to infer incidental memory 138 

capacity. We tested male rats shortly after acute exposure to the smoke of either high-THC or 139 

high-CBD-containing Cannabis buds using an exposure paradigm validated with rats (Barnard et 140 



High-THC Cannabis smoke impairs incidental memory capacity in male rats 

 

6 

6 

al., 2022; Roebuck et al., 2022). We found that high-THC, but not high-CBD, smoke impaired 141 

performance of male rats in the tests in a stimuli-specific manner. 142 

 143 

Materials & Methods  144 

Subjects  145 

Adult (2-4 months of age) male Long-Evans rats (n=92; Charles River Laboratories, Kingston, 146 

NY) were pair housed in a vivarium in standard ventilated cages with ad libitum water and food, 147 

and a plastic tube for environmental enrichment on a 12-hour light/dark cycle (starting at 0700). 148 

For establishment and validation of IST and DST with objects and odors, 52 rats were used; 48 149 

additional rats were used to evaluate the impact of acute Cannabis smoke exposure on novelty 150 

preference. Rats were tested at the same time of day between the hours of 0730 and 1800. All 151 

procedures followed guidelines from the Canadian Council on Animal Care and were approved 152 

by the University of Saskatchewan Animal Research Ethics Board. 153 

 154 

Apparatus and testing materials 155 

Rats were handled in the testing room (3 mins a day for 3 days) and subsequently habituated to 156 

both the testing apparatus (10 min for 2 days) and to the smoke chamber apparatus (20 min for 2 157 

days). Rats were tested in a white corrugated plastic box (60 cm x 60 cm x 60 cm) with the 158 

stimuli evenly presented between two opposing walls at three positions (see Fig 1; 9 cm from 159 

side of box, 21.5 cm apart from each other). Object stimuli were created from a variety of 160 

LEGO™ pieces of different sizes and colors with an average size of 7 cm x 10 cm. LEGO™ was 161 

chosen to maintain consistency between different object sets. Odor stimuli were created using 162 

250 mL glass canning jars. The jars were filled with sand for stability, and to provide a resting 163 

place for a small plastic vile filled half-way with a powered spice (lemon pepper, dill, sage, 164 

onion, anise, cloves, ginger, cumin, cocoa, celery salt, coffee, cinnamon, garlic, or oregano). 165 

Holes were drilled in the lids of the jars to allow the rats to smell the spices. All items were 166 

affixed to the testing apparatus with Velcro™ at one of six positions to prevent them from being 167 

displaced during the test.  168 

 169 

Spontaneous incidental memory test protocol 170 
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To validate the IST and DST with objects, 24 naïve rats performed both the 3- and 6- object 171 

variations (Fig 1). Twenty naïve rats were used to establish the 3- and 6-odor IST and DST. 172 

Using a within-subjects design, 48 additional rats performed both the IST and DST with objects 173 

and odors 20 min after Cannabis smoke exposure (Fig 2A). The order of tests was quasi-174 

counterbalanced, and rats had a 2-day washout period between tests. On the test day, the testing 175 

box was prepared with 2 sets of 6 stimuli for the test and paradigm being performed (Figs 2A; 176 

4A,B; 5A,B). The rat was then placed into the testing box for the sample phase, for a duration of 177 

5 min. Following the sample phase, the rat was taken out of the testing box and placed inside a 178 

transport cage for 1 min. During the delay, all stimuli were replaced for the test phase. Then, the 179 

rat was placed back into the box for the test phase (5 min). The testing box and the stimuli were 180 

cleaned with 70% ethanol after each phase.  181 

 182 

Cannabis bud preparation and acute smoke exposure protocol 183 

A high-THC (19.51%) and low-CBD (<0.07%) strain, Skywalker (Aphria Inc., Lemington, ON, 184 

lot #6216), and a high-CBD (12.98%) and low-THC (0.67%) strain, Treasure Island (Aphria 185 

Inc., Lemington, ON, lot #6812), were used for Cannabis smoke exposure as previously 186 

established (Barnard et al., 2022; Roebuck et al., 2022). All Cannabis was stored in light-187 

protected containers at room temperature. On the day of testing, whole Cannabis buds were 188 

ground in a standard coffee grinder for 5 sec. Then, 300 mg of the ground bud was measured and 189 

loaded into a ceramic coil that was part of a 4-chamber inhalation system from La Jolla Alcohol 190 

Research, Inc. (San Diego, CA). Rats were then loaded individually into small plastic cages and 191 

placed in the airtight Plexiglas chambers. A Cannabis combustion session started with a 5-min 192 

acclimation period, then a 1-min combustion occurred through three 5 sec ignitions with a 15 sec 193 

delay in-between each ignition. The temperature was set to 149°C, with a wattage of 60.1 W on 194 

the SV250 mod box. The smoke was then drawn into the clear Plexiglas chambers at a flow rate 195 

of 10-12 L/min. Following the 1-min combustion cycle, pumps were turned off for 1 min before 196 

they were turned back on for 13-min to gradually evacuate the smoke. Thus, the total exposure 197 

time was 15 min following initial ignition of the Cannabis. Rats were then moved to the testing 198 

apparatus to start the behavioral tests 20 min after the start of the combustion cycle. Boli left by 199 

the rats in the small plastic cages that housed them during combustion were then counted by an 200 

experimenter. 201 
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 202 

Behavioral Analysis 203 

For validation of spontaneous incidental memory tests, behavioral videos were collected from an 204 

overhead perspective in black and white at a frame rate of 30 frames per second (fps) with a 205 

resolution of 720 pixels x 480 pixels (Panasonic WV-BP334 1/3” B&W). Collected videos were 206 

manually scored using a conventional stopwatch method, where the duration of interaction at 207 

each stimulus was recorded. 208 

To allow for automated behavioral analysis, behavioral videos for the Cannabis exposure 209 

experiment were recorded from an overhead perspective in full color at a frame rate of 30 fps 210 

and a resolution of 1080 pixels x 1080 pixels (Logitech Brio 505, Logitech). To further 211 

standardize behavioral videos, we used the “batch preprocessing” module within SimBA to crop 212 

videos to only include the apparatus, to ensure standardized resolution and frame rate, and to the 213 

trim video length to desired experimental phases. Additionally, we chose to film all videos in a 214 

.mp4 format as this format is generally compatible with open-source video analysis software. 215 

More details regarding this process, and the subsequent steps in our supervised maching learning 216 

pipeline can be found here (https://github.com/HowlandLab/ILBTJO_NODB_SimBA_2023). 217 

After filming, DeepLabCut (2.2.3) was utilized to continuously track the spatial location 218 

of eight user defined points-of-interest (Fig 2B) (Mathis et al., 2018). Mean tracking confidence 219 

for each point-of-interest is shown in Extended Data, Fig 2-1. To train the DeepLabCut model, 220 

we randomly extracted 300 frames from 60 representative behavioral videos, with an equal 221 

representation of the IST/DST and object/odor stimuli. Next, each frame was manually 222 

annotated, where a human annotator placed digital points-of-interest on the rat (Fig 2B). 223 

Manually annotated frames were used to train a deep neural network-based model to predict the 224 

spatial location of points of interest for each frame across new videos. Nath and colleagues 225 

(2019) describe the procedure used in the present experiments for model training and subsequent 226 

video analysis using DeepLabCut. A pre-trained ResNet-50 convolutional neural network (CNN) 227 

was then trained on 95% of annotated frames for 200,000 iterations, where 5% of frames were 228 

reserved for model assessment. After training, we analyzed the CNN learning curve to select an 229 

optimal model that performs well on both test and train data. Pose-estimation data was extracted 230 

from videos using a model trained for 80,000 iterations, which represents the iteration where test 231 

error is minimized, and the training error is saturated. Our model produced a training error of 232 
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4.89 and a test error of 4.35 using the default hyperparameters, without a p-cutoff filter applied. 233 

Finally, pose-estimation tracking files were filtered using the DeepLabCut native median filter 234 

model. It is important to note that annotated training frames for this experiment were added to an 235 

existing DLC project (training set = ~1,000 annotated frames). As the CNN was pretrained to 236 

predict the spatial position of key points, and all videos were filmed within an identical 237 

experimental apparatus, the number of additional required annotated frames to acquire high-238 

fidelity pose-estimation data for the present experiment was likely lower than if the CNN was 239 

trained from scratch. The DLC model file used for analysis is freely available on GitHub 240 

(https://github.com/HowlandLab/ILBTJO_NODB_SimBA_2023), and any additional 241 

training data will be freely supplied upon request.  242 

We then trained a supervised machine learning-based behavioral classifier to predict 243 

interaction events based on movement features extracted from pose-estimation data (Goodwin et 244 

al., 2022). Nilsson and colleagues (2020) describe the detailed procedure used in the present 245 

experiments for model training and subsequent video analysis using SimBA. Classifier training 246 

was completed using the eight-point classical tracking version of the SimBA pipeline (SimBA-247 

UW-tf-dev = 1.32.2). We trained two classifiers, one for object-based stimuli and one for odor-248 

based stimuli, to predict interaction events across test variation. For each classifier, the training 249 

dataset consisted of user-annotated frames from ~30 five-minute videos, where each frame was 250 

assigned a binary label of “interaction” or “non-interaction”. The object-based and odour-based 251 

classifiers were trained on 28,586 and 32,872 frames of target “interaction” behavior, 252 

respectively. Prior to manual annotation, trimmed videos and filtered pose-estimation data was 253 

imported, then a scale factor was used to normalize variable camera filming heights to a known 254 

metric distance (experimental apparatus, dimensions = 60cm x 60cm). Additionally, each stimuli 255 

position was assigned a region-of-interest that was centered at each Velcro stimuli attachment 256 

point, with a defined radius extending ~2cm beyond the edge of stimuli. In total, 273 features 257 

were extracted from tracking data, where 251 features capture spatiotemporal relationships 258 

between points-of-interest, and 12 features capture ROI-related movement. We slightly deviated 259 

from the standard SimBA feature engineering approach by removing ROI-related features called 260 

“zone_cumulative_percent” and “zone_cumulative_time”. These features increase the prediction 261 

probability of a true class based on animal’s preferentially spending time in a defined ROI. 262 

While these features may be useful for predicting behaviors that only include in specific regions 263 
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(e.g., rat dams retrieving pups from a nest), inclusion of these features in our project would bias 264 

predictions unequally between the six stimuli positions. For both the object and odor classifiers, 265 

the behavioral features most heavily weighted for model predictions include distance to stimuli, 266 

nose movements, region-of-interest, and spatial dynamics between points-of-interest (Fig 2C). 267 

Feature importance clusters were created by extracting the 40 most important features from 268 

SimBA, then splitting features based on the following criteria: 1) features related to the distance 269 

to stimuli “distance to stimuli”; 2) features related to nose movements (e.g., 270 

Nose_movement_M1_sum_6) were clustered to “nose movements”; 3) features related to a 271 

subjects’ nose key point being located within a defined ROI surrounding stimuli were clustered 272 

to “region-of-interest”; 4) remaining features were clustered to a common “spatial dynamics 273 

between points-of-interest”. For the object classifier, we defined "interaction" as frames where 274 

the rat's nose was within 2 cm of the object, while looking at and/or chewing the stimuli for a 275 

duration greater than 50 msec. For the odor classifier, "interaction" was defined as frames where 276 

the rat's nose was within 2 cm of the top of the odor jar, while looking at and/or chewing the 277 

stimuli for a duration greater than 50 msec. Classifiers were built using the following 278 

hyperparameter set: n_estimators = 200, RF_criterion = entropy, RF_max_features = sqrt, 279 

RF_min_sample leaf = 2 (Extended Data Fig 2-2,2-3,2-4). Precision, recall, and F1 scores for the 280 

classifiers are shown in Fig 2D,E and further described in the Extended Data. To account for 281 

instances of sub-optimal supervised machine learning prediction, we created a five-tiered 282 

verification rank system, where supervised machine learning-generated predictions on videos 283 

with ranks of four or five were replaced by human stopwatch scoring for the final analysis (Fig 284 

3C,D). 285 

 286 

Statistical Analysis  287 

For all analyses, the entire 5 min of the sample or test phase was analyzed. Total stimuli 288 

exploration times were calculated by taking the sum of the time spent interacting with each 289 

stimulus, as measured in sec. A discrimination ratio (DR) was calculated for each test session, 290 

which reflects the time spent with the novel stimulus compared to the average time spent with 291 

the familiar stimuli. This metric is calculated by the equation DR = (T (novel) – T (avg. 292 

familiars) / T (total)), and produces a ratio between -1 and +1, that indicates a familiar and 293 

novelty preference, respectively. A DR was also calculated for interaction bout count, while 294 
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untransformed values were used to assess distance travelled and novel approach latency. Rats 295 

were excluded from the final analysis if all stimuli in the box were not visited in the sample 296 

phase, if an item was knocked over or moved, or if the video was blurry. From the test 297 

establishment experiments, 2 male rats were removed from the 3-object IST, 1 from the 3-odor 298 

IST, 1 from the 3-odor DST, and 1 from the 6-odor IST. Due to missing video footage, 8 values 299 

are missing from each 3- and 6- object IST and DST sample phase mean ± SEM calculations. 300 

From the acute Cannabis exposure interaction bout duration data, 6 videos were excluded from 301 

the 6-object IST, 2 from the 6-object DST, 1 from the 6-odor IST, and 2 from 6-odor DST. From 302 

the bout count data, 7 were excluded from the 6-object IST, 3 from the 6-object DST, and 2 from 303 

6-odor DST. 304 

Data were analyzed using GraphPad Prism 8.0.1 software. To evaluate the DR’s 305 

generated from interaction times in the test validation and establishment experiment, one-sample 306 

t-tests were used against chance (i.e., 0). To evaluate the total exploration times in the test 307 

validation and establishment experiment, two-way ANOVAs (followed by Bonferroni’s multiple 308 

comparisons test) with factors of Phase (sample vs test) and Item Count (3- vs 6-) were used. To 309 

evaluate the total exploration times following Cannabis smoke exposure, two-way ANOVAs 310 

(followed by Bonferroni’s multiple comparisons test) with factors of Phase (sample vs test) and 311 

Treatment (Air Control vs high-THC [Skywalker] vs high-CBD [Treasure Island]) were used. 312 

Following Cannabis exposure, to evaluate the DR’s and untransformed values measuring 313 

interaction time, bout count, distance travelled, and novel approach latency, one-way ANOVAs 314 

(followed by Turkey’s multiple comparisons test) with a factor of Treatment (Air Control vs 315 

high-THC vs high-CBD) were used. Lastly, to evaluate the interaction time DRs (novelty 316 

preference) against chance, one-sample t-tests against 0 were used. P values that were < or = to 317 

0.05 were considered significant. 318 

 319 

Results  320 

Male rats perform both the IST and DST with objects and odors, using either 3- or 6- 321 

stimuli 322 

The 3- and 6-object IST and DST were validated for male rats by adopting protocols 323 

similar to those used with mice (Olivito et al., 2016, 2019; Sannino et al., 2012). Male rats spent 324 

significantly more time with the novel object in comparison to the familiar objects in the 3-object 325 
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IST [t(14) = -6.29, p < 0.001], and in the 6-object IST [t(14) = -5.02, p < 0.001] (Fig 1E). Male 326 

rats also displayed novelty preference in the 3-object DST [t(16) = -5.09, p < 0.001], and in the 327 

6-object DST [t(14) = -3.94, p < 0.001] (Fig 1E). A comparison of the IST and DST DRs showed 328 

no differences between the 3-object [t(30) = 0.98, p = 0.36] or 6-object [t(28) = 1.40, p = 0.17] 329 

variations (Fig 1E). All treatment groups performed better than chance (t(15) = 7.35, p < 0.0001 330 

(3-object IST); t(14) = 8.41, p < 0.0001 (6-object IST); t(15) = 8.52, p < 0.0001 (3-object DST); 331 

t(14) = 7.31, p < 0.0001 (6-object DST) (Fig 1E). 332 

 A significant effect of Phase was seen on the total stimuli interaction time in the IST with 333 

objects [F(1, 39) = 9.63, p = 0.004], with no effect of Item Count [F(1, 39) = 1.62, p = 0.21] or 334 

an interaction [F(1, 39) = 0.11, p = 0.74] present (Table 1). Male rats spent more time exploring 335 

stimuli in the sample phase of the object IST than the test phase. There was also a significant 336 

effect of Phase on the total stimuli interaction time in the object DST [F(1, 39) = 13.89, p = 337 

0.0006], with no effect of Item Count [F(1, 39) = 3.78, p = 0.059] or an interaction [F(1, 39) = 338 

2.61, p = 0.11] present (Table 1). Inspection of the data revealed that in the object DST, male rats 339 

spent more time exploring stimuli in the sample phase than the test phase. 340 

In the tests with odors, male rats also showed novelty preferences in the 3- and 6- odor 341 

IST and DST (Fig 1F). Male rats spent significantly more time with the novel odor compared to 342 

the familiar odors in the 3-odor IST [t(7) = -1.87, p < 0.05] and 6-odor IST [t(10) = -6.59, p < 343 

0.001] (Fig 1F). Novelty preference was also demonstrated in the 3-odor DST [t(6) = -7.94, p < 344 

0.001], and in the 6-odor DST [t(11) = -3.92, p < 0.01] (Fig 1F). Lastly, no differences between 345 

the IST and DST DR’s were found in the 3-odor [t(13) = -1.44, p = 0.17] or 6-odor [t(21) = 1.60, 346 

p = 0.12] variations (Fig 1F). All treatment groups performed better than chance (t(7) = 5.04, p = 347 

0.0015 (3-odor IST); t(11) = 7.36, p < 0.0001 (6-odor IST); t(7) = 5.40, p = 0.0010 (3-odor 348 

DST); t(11) = 10.61, p < 0.0001 (6-odor DST) (Fig 1F). 349 

In the odor IST, there was no effect of Phase on the total stimuli interaction time [F(1, 350 

36) = 1.16, p = 0.29], but a main effect of Item Count [F(1, 36) = 4.55, p = 0.040] and a 351 

significant interaction was present [F(1, 36) = 4.24, p = 0.047] (Table 1). Male rats spent more 352 

time exploring odors in the sample phase of the 6-odor IST than in the 3-odor IST (p = 0.031). In 353 

the odor DST, there was no main effect of Phase [F(1, 36) = 2.34, p = 0.14], Item Count [F(1, 354 

36) = 3.79, p = 0.06] or an interaction [F (1, 36) = 1.49, p = 0.23] present (Table 1). 355 

 356 
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Combining automated and human stopwatch scoring is a valid behavioral quantification 357 

approach 358 

 To quantify rat behavior following Cannabis smoke exposure using the hybrid scoring 359 

method, we created a video set of 288 test phase videos of the 6-stimuli test variations. Sample 360 

phase videos were all manually scored, where inclusion criterion was applied as described above, 361 

and included test phase videos were analyzed using our automated behavioral quantification 362 

pipeline. 363 

 To assess the accuracy of model predictions for both pose-estimation and behavioral 364 

classification, we utilized software native performance metrics that compare machine-generated 365 

predictions to manual annotation. The spatial coordinates of human annotated and machine-366 

predicted points-of-interest differed by a mean Euclidian distance of 4.89 pixels on videos within 367 

the model training set and 4.35 pixels on test videos. Pose-estimation quality was further 368 

assessed by calculating the average prediction confidence for each point-of-interest by video 369 

(Extended Data Fig 2-1). We found that the average prediction confidence ranged between 370 

92.8% and 97.4% by point-of-interest, where no significant differences were observed between 371 

object-based and odor-based videos. Behavioral classifier performance was evaluated by a series 372 

of confusion matrices (Fig 2D,E) that report the precision, recall, and combined F1 score for 373 

each model. In short, both classifiers demonstrate high precision and recall (object F1 = 0.927, 374 

odor F1 = 0.897) when assessed by comparing manual annotation to classifier predictions on 375 

randomly selected test video frames. However, when classifier performance was assessed by 376 

comparing predictions on randomly selected interaction bouts, object classifier performance 377 

changed marginally (F1 = 0.93), but odor classifier performance decreased markedly (F1 = 0.63). 378 

For both the object and odor classifiers, the behavioral features most heavily weighted for model 379 

predictions include distance to stimuli, nose movements, region-of-interest, and spatial dynamics 380 

between points-of-interest (Fig 2C). Additional details regarding model training and assessments 381 

can be found in the Extended Data. 382 

To verify the reliability of supervised machine learning-generated predictions relative to 383 

traditional stopwatch-based and automated region of interest-based scoring, we conducted a 384 

three-way correlational analysis on generated interaction DR’s (Fig 3A,B). We found that, across 385 

stimuli, supervised machine learning-generated predictions were more highly correlated with 386 

human stopwatch scoring than region of interest-based scoring; however, supervised machine 387 
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learning-generated predictions were more highly correlated with human stopwatch scoring for 388 

object interaction (r = 0.75) relative to odor interaction (r = 0.53). Additionally, we found that, 389 

across stimuli, region of interest-based scoring held a weaker correlation relative to both human 390 

stopwatch scoring (object: r = 0.42, odor: r = 0.28) and supervised machine learning-generated 391 

(object: r = 0.45, odor: r = 0.42) interaction DR’s. To account for instances where supervised 392 

machine learning predictions significantly differ from human stopwatch scoring, we created a 393 

five-tiered verification rank system, where supervised machine learning-generated predictions on 394 

videos with ranks four or five were replaced by human stopwatch scoring for the final analysis 395 

(Fig 3C). Upon visual inspection of supervised machine learning-generated predictions, we 396 

found that ~80% of object-based videos met inclusion criteria, while only ~60% of odor-based 397 

videos met inclusion criteria (Fig 3D). To justify supplementing human stopwatch scoring for 398 

sub-optimal supervised machine learning -generated predictions, we conducted a correlational 399 

analysis between human stopwatch scoring and supervised machine learning interaction DR’s 400 

only on videos which met inclusion criteria. We found that human stopwatch scoring and 401 

supervised machine learning interaction DR’s were moderately-to-highly correlated (Fig 3E: r = 402 

0.83, Fig 3F: r = 0.87) across stimuli type. 403 

 404 

High-THC, but not high-CBD, Cannabis smoke exposure impairs novelty preference for 405 

high- (DST) memory loads with object stimuli 406 

Interaction bout duration DR’s were investigated to examine if novelty preference was 407 

impacted by treatment within each test variation. No effect of Treatment in the 6-object IST [F(2, 408 

61) = 0.85, p = 0.43] was found (Fig 4C). Using an analysis of the raw effect sizes, there were no 409 

notable effect sizes to report (Table 3). A main effect of Treatment was present in the 6-object 410 

DST [F(2, 63) = 3.75, p = 0.03], with a significant difference seen between the Air Control and 411 

high-THC groups after a Tukey’s multiple comparisons test (p = 0.04) (Fig 4C). The difference 412 

between the Air Control and high-THC groups represents a moderate effect size [d = -0.66, 95% 413 

CI (1.27, -0.035), p =0.03] (Table 3). Most treatment groups performed significantly better than 414 

chance (IST-Air Control: t(23) = 3.15, p = 0.004; IST-high-THC: t(19) = 2.24, p = 0.037; IST-415 

high-CBD: t(19) = 4.27, p = 0.0004; DST-Air Control: t(18) = 3.29, p = 0.004; DST-high-CBD: 416 

t(24) = 2.14, p = 0.042) except for the high-THC group in the 6-object DST (t(22) = 0.66, p = 417 

0.51) (Fig 4C). 418 
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We then investigated novel approach latency values, defined as the interval between rats 419 

being placed into the experimental arena and interacting with the novel object. No effect of 420 

Treatment on novel approach latency values was observed in either the 6-object IST [F(2, 70) = 421 

0.77, p = 0.46] or the 6-object DST [F(2, 67) = 0.076, p = 0.93] (Fig 4D). Next, to examine if 422 

male rats visited the novel object at a higher frequency than familiar objects, we evaluated the 423 

interaction bout DR’s (Fig 4E). Here, we showed a significant main effect of Treatment in the 6-424 

object IST [F(2, 64) = 8.05, p < 0.001], as the Air Control (p = 0.001) and high-THC (p = 0.01) 425 

groups were different from the high-CBD group. However, we failed to find a main effect of 426 

Treatment on bout count DR’s in the 6-object DST [F(2,64) = 0.96, p= 0.39] (Fig 4E). Lastly, the 427 

impact of Cannabis smoke exposure on locomotion during memory testing was evaluated. We 428 

found no main effects of Treatment on distance in either the 6-object IST [F(2, 70) = 0.58, p = 429 

0.56], or in the 6-object DST [F(2, 67) = 0.30, p = 0.74] (Fig 4F). 430 

When assessing total stimuli interaction time, a main effect of Treatment [F(2,129) = 431 

4.07, p = 0.019], and of Phase [F(1, 129) = 6.45, p = 0.012] was seen in the 6-object IST, with no 432 

significant interaction [F(2, 129) = 0.49, p = 0.62] (Table 2). In the 6-object DST, there was a 433 

main effect of Phase on total stimuli interaction time [F(1, 135) = 7.87, p = 0.0058], with no 434 

main effect of Treatment [F(2, 135) = 1.81, p = 0.17] or an interaction [F(2, 135) = 0.75, p = 435 

0.47] (Table 2). Following each smoke treatment, the number of boli was counted in the smoke 436 

exposure cage (Fig 6). A main effect of Treatment was observed [F(2, 141) = 172.90, p < 437 

0.0001], with a significant increase in the number of boli recorded following either Skywalker (p 438 

< 0.0001) or Treasure Island (p < 0.0001) smoke exposure after a Tukey’s multiple comparisons 439 

test. However, there was no difference in the number of boli observed between Skywalker or 440 

Treasure Island ( p = 0.40) smoke exposure groups. 441 

 442 

High-THC, but not high-CBD, Cannabis smoke exposure impairs novelty preference for 443 

high- (DST) and low- (IST) memory loads with odor stimuli 444 

Cannabis smoke exposure impacted the interaction bout duration DRs in the IST and 445 

DST. An effect of Treatment in the 6-odor IST [F(2, 73) = 3.54, p = 0.034] was seen, with a 446 

significant difference present between the Air Control and high-THC groups (Tukey’s multiple 447 

comparisons test, p = 0.046) (Fig 5C). A moderate effect size was found between the high-THC 448 

and Air Control groups [d = -0.78, 95% CI (1.41, -0.19), p =0.0058] (Table 3). A main effect of 449 
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Treatment for interaction bout duration DRs was also present in the 6-odor DST [F(2, 71) = 4.3, 450 

p = 0.017], with a significant difference between the Air Control and high-THC groups (p = 451 

0.024) and between high-THC and high-CBD groups (p = 0.046) after a Tukey’s multiple 452 

comparisons test (Fig 5C). A moderate effect size was also found between the high-THC and Air 453 

Control groups [d = -0.87, 95% CI (1.47, -0.23), p =0.0042] (Table 3). Air Control and high-454 

CBD treatment groups performed significantly better than chance in both tests (IST-Air Control: 455 

t(25) = 5.90, p < 0.001; IST-high-CBD: t(22) = 2.47, p = 0.022; DST-Air Control: t(23) = 3.45, p 456 

= 0.002; DST-high-CBD: t(27) = 2.25, p = 0.033), whereas the high-THC group did not in either 457 

the 6-odor IST (t(26) = 0.47, p = 0.64) or 6-odor DST tests (t(21) = 1.00, p = 0.33) (Fig 5C). 458 

There was no effect of Treatment in the 6-odor IST [F(2, 77) = 0.036, p = 0.70], or in the 6-odor 459 

DST [F(2, 71) = 0.87, p = 0.42] when investigating novel approach latency (Fig 5D). Interaction 460 

bout DR’s were also determined to be unaffected by Cannabis exposure with no effect of 461 

Treatment in the 6-odor IST [F(2, 77) = 1.46, p = 0.24], and the 6-odor DST [F (2, 70) = 2. 19, 462 

p= 0.12] (Fig 5E). Treatment also did not impact the distance travelled by male rats in either the 463 

6-odor IST [F(2, 77) = 0.36, p = 0.70], or in the 6-odor DST [F(2, 71) = 0.87, p = 0.42] (Fig 5F). 464 

For exploration times in the 6-odor IST, a main effect of Treatment [F(2,142) = 3.78, p = 465 

0.025], and of Phase [F(1, 142) = 12.90, p = 0.0004] was seen, with no significant interaction 466 

[F(2, 142) = 2.27, p = 0.11] (Table 2). Male rats spent more time exploring stimuli in the Air 467 

Control sample phase than in the high-THC test phase (p = 0.017). As well, male rats explored 468 

stimuli more in the sample phase than in the test phase following high-THC (p = 0.0035), while 469 

spending more time exploring stimuli in the test phase following high-THC smoke exposure than 470 

following high-CBD smoke exposure (p = 0.009). In the 6-odor DST, there was a main effect of 471 

Phase on total stimuli interaction time [F(1, 134) = 10.01, p = 0.0019], with no main effect of 472 

Treatment [F(2, 134) = 0.021, p = 0.98] or an interaction [F(2, 134) = 0.85, p = 0.43]. Inspection 473 

of the data revealed that male rats spent more time exploring the odors during the test phase of 474 

the 6-odor DST, regardless of Treatment (Table 2). 475 

 476 

Discussion 477 

In the present study, we showed that male rats display novelty preferences in both the IST and 478 

DST with 3 and 6 objects, similar to previous findings using objects in male mice (Olivito et al., 479 

2016, 2019; Sannino et al., 2012). We also demonstrate, for the first time, that male rats exhibit 480 
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novelty preference with 3 and 6 odor stimuli, as measured in the IST and DST (Fig 1). Overall, 481 

male rats spent more time exploring stimuli in the sample phases of the 6 item IST and DST 482 

compared to the test phases, with stimuli-specific differences (Table 1). Following high-THC 483 

Cannabis smoke exposure in the tests with objects, a significant decrease in novelty preference 484 

was seen in the 6-object DST, but not in the 6-object IST (Fig 4C). However, for odor-based 485 

tests, we observed novelty preference impairments for high- and low-memory loads (Fig 5C). No 486 

notable treatment effect on total stimuli exploration time was present in the 6-object IST, but a 487 

significant increase in stimuli exploration time was seen in the test phase of the 6-object DST for 488 

all treatments (Table 2). In the 6- odor IST, male rats explored stimuli less in the sample phase 489 

compared to the test phase following high-THC Cannabis smoke exposure, with no notable 490 

effects in the 6-odor DST (Table 2). Taken together, these findings suggest that Cannabis smoke 491 

exposure impacts novelty preference in male rats in a load-dependent and stimuli- specific 492 

manner. 493 

 494 

Male rats demonstrate novelty preference in both the IST and DST with objects and odors 495 

In the test validation experiment, male rats demonstrated pronounced novelty preference 496 

in all test variations (Fig 1). The preferential interaction with novel stimuli compared to familiar 497 

stimuli after a brief delay suggests that recognition memory is intact in both object and odor-498 

based tests (Sannino et al., 2012; Shrager et al., 2008; van Vugt et al., 2017). The varying 499 

memory loads between the IST and DST also present the opportunity to examine incidental 500 

memory capacity (Sannino et al., 2012; Shrager et al., 2008). In this study, 3- and 6-item tests 501 

were run to replicate Sannino and others’ (2012) results showing that male mice demonstrated 502 

novel object discrimination when using up to 6 objects. To enable direct comparisons between 503 

object and odor stimuli, sets of 3 odors and 6 odors were chosen as well. Male rats explored the 504 

object stimuli a comparable amount between test variations and with varying numbers of stimuli 505 

(Table 1). Male rats did, however, spend significantly less time exploring objects in the test 506 

phase of the 6-object DST compared to the sample phase (Table 1). As the test phase progressed, 507 

male rats would have had increasing familiarization with all items in the test phase, which may 508 

explain the decreased total exploration times (Broadbent et al., 2010). Interestingly, there were 509 

no notable differences in the total stimuli interaction times between the 3-odor and 6-odor 510 

variations, indicating that while the total time male rats spent exploring stimuli was the same, the 511 
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time spent exploring each individual stimulus in the 6-item variation was about half of that for 512 

the 3-item variation (Table 1). In future experiments, it would be interesting to assess novelty 513 

preferences and exploration preferences in test with more than 6 stimuli, as has been reported for 514 

objects in male mice (Sannino et al., 2012). As well, these tests must be validated for use in 515 

female rats. Recent findings show sex differences in delay-dependent incidental memory 516 

capacity for objects in mice, which may depend on sub-cortical inhibitory control of the 517 

hippocampus (Torromino et al., 2022). These findings in mice raise the possibility that similar 518 

sex differences exist in rats, a question that will be investigated in future experiments. Validating 519 

the odor-based spontaneous tests in male and female mice would also be worthwhile given their 520 

affordability and availability of genetic models. 521 

The IST and DST allow the study of novelty preferences for stimuli arrays of varying 522 

size in a spontaneous, simple, and cost-effective manner. The tests do not require rodents to 523 

apply learned rules or procedures, eliminating the need for extensive training or researcher 524 

involvement. The tests also evoke minimal stress in rodents and do not require typical food-525 

restriction protocols to increase reward-driven performance. Performance on the object tests 526 

likely engage a combination of visual and tactile recognition memory, but as the object stimuli 527 

were constructed with LEGO™ blocks of similar size, identical smooth textures, and sharp 528 

corners, the tests were likely biased to engage visual recognition memory. The object-based test 529 

may engage visual, perirhinal, medial prefrontal, parietal, and entorhinal cortices, as well as the 530 

hippocampus and thalamus to enable the object-based recognition memory across a delay 531 

(Barker et al., 2007; Cazakoff & Howland, 2011; Churchwell & Kesner, 2011; Creighton et al., 532 

2018; Dere et al., 2007; Fernandez & Tendolkar, 2006; Hannesson et al., 2004; Peters et al., 533 

2013; Sugita et al., 2015; Winters et al., 2004). The odor stimuli primarily engage odor-based 534 

recognition as identical opaque glass jars were used in the tests. A circuit including piriform, 535 

entorhinal, medial prefrontal, and orbitofrontal cortices, along with hippocampus may be 536 

involved in the odor-based memory across a delay (Alvarez & Eichenbaum, 2002; Davies et al., 537 

2013; Mouly & Sullivan, 2010; Ramus & Eichenbaum, 2000; Sandini et al., 2020). To examine 538 

the brain regions and neural mechanisms underlying working memory capacity in different 539 

contexts, a variety of behavioral tasks have been employed. Visuospatial working memory and 540 

working memory capacity are examined with the radial-arm maze, Barnes Maze, and operant 541 

delayed nonmatching-to-sample and delayed-match-to-sample tasks (Barnard et al., 2022; 542 



High-THC Cannabis smoke impairs incidental memory capacity in male rats 

 

19 

19 

Cowan, 2010; Daneman & Carpenter, 1980; Dudchenko, 2004; Dudchenko et al., 2013; 543 

Kirchner, 1958; Oomen et al., 2013; Scott et al., 2020; Vorhees & Williams, 2014; Wilhelm et 544 

al., 2013). To study odor based working memory capacity, the odor span task and other tests that 545 

employ a nonmatch-to-sample-rules have often successfully been used (Dudchenko et al., 2000; 546 

Scott et al., 2020). Although these tasks measure working memory capacity, they require food 547 

restriction, extensive training, and heavy researcher involvement. Spontaneous recognition tests 548 

circumvent these weaknesses, although the cognitive processes involved in incidental memory 549 

capacity may differ from those necessary for more goal-directed forms of working memory 550 

capacity. 551 

 552 

High-THC, but not high-CBD, Cannabis smoke exposure impairs novelty preferences for 553 

both object and odor stimuli 554 

To evaluate the effects of Cannabis smoke exposure on incidental memory over short 555 

delays, we used the hybrid scoring approach to assess novelty preference in the IST and DST 556 

with objects and odors. The 6-item object and odor tests were selected as they would be expected 557 

to engage circuits related to capacity, while still  ensuring reliable performance in control groups, 558 

as previously established in mice (Sannino et al., 2012; Torromino et al., 2022). Novelty 559 

preference was primarily inferred from interaction bout duration, as it was not predicted by 560 

interaction bout count or novel approach latency. Following high-THC Cannabis smoke 561 

exposure in the tests with objects, a significant decrease in novelty preference was seen in the 6-562 

object DST, but not in the 6-object IST (Fig 4C). For odor-based tests, an impairment in novelty 563 

preference was observed in both the IST and DST following high-THC Cannabis smoke 564 

exposure (Fig 5C). In all tests, novelty preference was similar between the Air Control and high-565 

CBD Cannabis smoke groups. Additionally, no differences in locomotion were observed among 566 

treatment groups. The increased total stimuli exploration time in the sample phases of the object 567 

DST compared to the test phases likely indicates familiarity with the items in the test phase that 568 

were previously presented during the sample phase (Broadbent et al., 2010). Interestingly, in the 569 

6-odor IST, there was lower stimuli exploration time in the sample phase compared to the test 570 

phase following high-THC Cannabis smoke exposure (Table 2). 571 

Overall, the deficits in novelty preference following high-THC Cannabis smoke exposure 572 

in both the object and odor-based tests in male rats are likely attributable to the actions of THC, 573 
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and not to smoke alone. Interestingly, boli excretion was increased following acute Cannabis 574 

smoke exposure, but with no differences observed between the high-THC and high-CBD groups 575 

(Fig 6). As novelty preference was comparable between the Air Control and high-CBD groups, 576 

smoke likely did not provoke stress-induced performance deficits. As behavioral testing was 577 

conducted 20 min following the initiation of Cannabis smoke exposure, plasma and brain THC 578 

concentrations would have been near their peak in the rats (Baglot et al., 2021; Barnard et al., 579 

2022; Hložek et al., 2017; Moore et al., 2022; Ravula et al., 2019). Analysis of plasma from male 580 

rats following an identical Cannabis smoke exposure paradigm revealed levels of 14.55 ± 1.59 581 

ng/mL with a small amount of CBD (1.98 ± 0.38 ng/mL) 30 min after smoke exposure (Barnard 582 

et al., 2022). After high-CBD smoke exposure, negligible amounts of THC were found in 583 

plasma, along with 4.47 ± 1.15 ng/mL of CBD (Barnard et al., 2022). Thus, the current smoke 584 

exposure protocol increases blood plasma levels of THC to the low end of what is typically 585 

observed in humans following Cannabis cigarette consumption (Grotenhermen, 2003; Huestis, 586 

2007; Huestis et al., 1992; Newmeyer et al., 2016; Moore et al., 2022; Ramaekers et al., 2009). 587 

Although the THC plasma levels in male rats were comparably low, we still observed the impact 588 

of Cannabis exposure on memory. The different THC-induced novelty preference impairments 589 

seen in the male rats between objects and odors may be due to the varying neural circuits 590 

underlying stimulus perception and integration (Constantinidis & Klingberg, 2016; Eriksson et 591 

al., 2015; Fernandez & Tendolkar, 2006; Galizio, 2016; Mouly & Sullivan, 2010). Under low 592 

memory loads (IST), treatment does not impact object novelty preference, consistent with 593 

unperturbed WM performance previously observed in a 2-item novel object recognition (NOR) 594 

test following chronic exposure to 5.6% THC Cannabis cigarettes (Bruijnzeel et al., 2016). The 595 

novelty preference deficits observed following high-THC Cannabis exposure in the 6-odor IST 596 

also might have been affected by the decreased exploration time in the sample phase. Lastly, the 597 

similar THC-induced deficits in the DST with objects and odors could be due to sensitivity of the 598 

working memory subconstructs evoked under high memory loads to Cannabis exposure (Barch 599 

& Smith, 2008). 600 

 601 

The case for, and caveats of, supervised machine learning-based behavioral analysis at 602 

scale 603 
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Automated behavioral analysis represents a potential paradigm shift in the way 604 

behavioral data are generated and shared (Mathis et al., 2020). In the present study, we 605 

demonstrate the case for, and caveats of, using a supervised machine learning-based analysis 606 

method for complex behavior at scale. In short, pose-estimation data was used to train two 607 

behavioral classifiers to predict interaction events with objects and odors. To assess the 608 

reliability of supervised machine learning-generated behavioral predictions, we compared 609 

quantified rat-stimulus interaction to human stopwatch and region of interest based scoring. We 610 

found that supervised machine learning-generated predictions were more strongly correlated with 611 

human stopwatch than region of interest-based scoring; however, we observed that supervised 612 

machine learning-generated predictions were more highly correlated with human stopwatch-613 

based scoring for object stimuli than for odor stimuli. As a methodological validation control, we 614 

conducted an inter-rater variability analysis to ensure that comparison of human stopwatch and 615 

supervised machine learning behavioral scoring is generalizable to manual scorers of varying 616 

experience levels (Extended Data Fig 3-1). In short, we found a strong correlation between 617 

scorers of all experience levels (0.85 < r < 0.94), but a comparatively weaker correlation between 618 

experienced and beginner scorers. While a generally strong correlation between all scorers 619 

reinforces human stopwatch scoring as a gold-standard, experience-dependent changes in scoring 620 

accuracy underscore the value of high-throughput and objective scoring methods, such as the 621 

supervised machine learning-based method employed in this study. 622 

Upon visual inspection of supervised machine learning-generated predictions, a near 30% 623 

increase in the proportion of excluded supervised machine learning-based odor interaction DR’s 624 

is striking given that each classifier was trained on the same number of training frames, used 625 

identical algorithmic hyperparameters, and no significant treatment differences were observed in 626 

the proportion of excluded videos (Extended Data Fig 3-2). We propose that this difference may 627 

be explained by divergent operational definitions of interaction in object and odor tests. Rat-628 

object events encompassed interaction along the entire height of the object, while rat-odor 629 

interaction was only counted at a narrow space around the lid of the mason jar. As we employed 630 

a 2-dimensional (2D) pose-estimation approach, movements along the height of stimuli were not 631 

well captured, potentially leading to sub-optimal predictions and grounds for exclusion. While 632 

classifiers trained on 2D pose-estimation data show reliability on classifying behaviors restricted 633 

to single-plane spatiotemporal movements, recent studies of complex behaviors, such as self-634 
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grooming, generally train classifiers on 3D pose-estimation data to better capture the entirety of a 635 

movement and to minimize occlusion (Marshall et al., 2021, 2022; Minkowicz et al., 2023; 636 

Newton et al., 2023). Said differently, our assumption is not that the manual scorer and algorithm 637 

are using fundamentally different patterns of rat movement to infer behavior, but rather that the 638 

human is able to innately infer 3D from a 2D video, which is an important clue for interaction 639 

with stimuli that is not well captured in the automated analysis. Finally, software native 640 

performance metrics for both behavioral classifiers closely mirror those reported in published 641 

studies utilizing supervised machine learning-based analysis; however, manual verification of 642 

predictions revealed significant instances of misclassification (Newton et al., 2023; Winters et 643 

al., 2022). We contend that supplementing classifier performance metrics with correlational 644 

analysis and verification steps are best practices when conducting scaled automated behavioral 645 

analysis. 646 

While a full review of best practices in automated behavioral analysis approaches is 647 

beyond the scope of this study and has been reviewed in detail by others (Luxem et al., 2022; 648 

Mathis et al., 2019), hardware and software optimization is critical for promoting model 649 

generalizability. First, to fully capture behaviors of interest, researchers utilizing automated 650 

behavioral analysis should be cognisant of the angle, and number, of camera perspectives used 651 

during filming (Luxem et al., 2022). Additionally, it is essential to include a diversity of training 652 

examples during model training, as a high degree of diversity in a training set will lead to a high 653 

degree of generalizability for both pose-estimation (DeepLabCut) and subsequent supervised 654 

machine learning-based analysis (SimBA). For example, within the present study, differences in 655 

color contrast, filming angle, and resolution likely contributed to a lack of DeepLabCut model 656 

generalizability between videos filmed for test validation (Figure 1) and Cannabis manipulation 657 

(Figure 4, Figure 5). Taken together, supervised machine learning-based analysis is a promising 658 

tool for behavioral neuroscience, but this approach still faces some significant limitations, and 659 

researchers should adhere to available best practices to maximize the reliability of behavioral 660 

measurements. 661 

 662 

Conclusion 663 

Using novel spontaneous tests and a hybrid scoring method, the impact of acute exposure 664 

to high-THC or high-CBD Cannabis smoke on incidental memory was evaluated in male rats. 665 
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We show impaired object-based novelty preference after high-THC, but not high-CBD, 666 

Cannabis smoke exposure under a high-memory load. As well, we show deficits in odor-based 667 

novelty preference following high-THC Cannabis smoke exposure under both low- and high-668 

memory loads. Ultimately, these data indicate that Cannabis smoke exposure impacts novelty 669 

preference in a load-dependent, and stimuli- specific manner in male rats. 670 

  671 
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Figure Captions 672 

Figure 1. The validation and establishment of the IST and DST with objects and odors. A A 673 

picture of an example object set-up is shown. Objects are displayed in 6 positions in a white-674 

corrugated plastic box. B A picture of an example odor set-up is shown. Odors are displayed in 6 675 

positions in a white-corrugated plastic box. C An example of an object stimuli. D An example of 676 

an odor stimuli. E Object interaction was measured using DR’s to evaluate novelty preference 677 

using 3-objects and 6-objects. Male rats explore the novel object significantly more than the 678 

familiar objects in the IST and DST with both 3- and 6- objects. No differences in novelty 679 

preference or exploration times are seen between the IST and DST, or between 3-object and 6-680 

object versions. F Odor interaction was also measured using DR’s to evaluate novelty preference 681 

using 3-odors and 6-odors. Male rats explore the novel odor significantly more than the familiar 682 

odors in the IST and DST with both 3- and 6- odors. No differences in novelty preference or 683 

exploration times are seen between the IST and DST, or between the 3-odor and 6-odor versions. 684 

Data is represented as mean ± SEM. 685 

Figure 2. Experimental overview for acute Cannabis exposure and behavioral classifier 686 

training. A Schematic representation of the experimental design. Male Long-Evans rats (n = 48) 687 

were used for this study.  Using a repeated measures experimental design, each rat was exposed 688 

to high-THC Cannabis smoke, low-THC Cannabis smoke, and an Air Control condition. Male 689 

rats were exposed 20 minutes prior to the start of behavioral testing. Each male rat either 690 

underwent the 6-object IST and 6-object DST, or the 6-odor IST and 6-odor DST. The order in 691 

which the IST and DST was performed was randomized. Rat behavior was quantified using 692 

traditional stopwatch scoring and by automated SML-based behavioral analysis. Sub-optimal 693 

SML predictions were replaced by stopwatch scoring, constituting a hybrid scoring approach. B 694 

Illustration of the point-of-interest configuration used for pose-estimation analysis. We chose the 695 

number and position of points in accordance with the SimBA eight-point configuration. SimBA 696 

requires a standardized and specific position (and number) of points. Users should decide what 697 

SimBA configuration will be used (single animal, multi animal, point number) prior to network 698 

training with DeepLabCut. C Visualization of the relative feature importance of the four features 699 

clusters. In short, the 40 most important features were systematically categorized into distinct 700 

clusters, then we summed the feature importance’s of individual features within each cluster. The 701 

raw features importance log is included under “assessment + logs” for each classifier within our 702 
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GitHub repository. D Classifier performance metrics for the object (top) and odor (bottom) 703 

models. Test frames were randomly extracted from the dataset (20% test, 80% train). E 704 

Classifier performance metrics for the object (top) and odor (bottom) models. Test bouts were 705 

randomly extracted from the dataset (20% test, 80% train). See Extended Data Figs 2-1 to 2-4 for 706 

more information regarding the supervised machine learning approach and validation. This 707 

figure was created using BioRender.com. 708 

Figure 3. Comparison between human stopwatch and supervised machine-learning 709 

generated output. A Correlation matrix between methods of quantifying rat-object interaction. 710 

This comparison was made between supervised machine-learning (SML), human-stopwatch 711 

(HS), and region-of-interest (ROI), generated interaction times. Interaction times by object was 712 

quantified using each scoring method, then the correlation between interaction DR’s was 713 

assessed. B Correlation matrix between methods of quantifying rat-odor interaction. Interaction 714 

times by odor was quantified using each scoring method, then the correlation between interaction 715 

DR’s was assessed. C Criteria used to rank automated classification. Each video was manually 716 

viewed for accurate classification, where a verification rank was assigned based on objective 717 

criteria. D Frequency of verification rank assignment by type of stimuli. Videos with a 718 

verification rank less than three were excluded from final analysis and replaced by human 719 

stopwatch scoring. Approximately 80% of object videos and 60% of odor videos met inclusion 720 

criteria, respectively. E Correlation between human stopwatch and ML-generated DR’s on object 721 

videos meeting inclusion criteria, indicating a moderate-to-high correlation (r(109) = .83, p < 722 

.0001). F Correlation between human stopwatch and ML-generated DR’s on odor videos 723 

meeting inclusion criteria, indicating a moderate-to-high correlation (r(77) = .87, p < .0001). See 724 

Extended Data Figures 3-1 nad 3-2 for additional information regarding the scoring and the 725 

ranking of videos by Cannabis treatment. 726 

Figure 4. High-THC Cannabis smoke exposure impacts novelty preference under high- 727 

(DST) memory loads using object stimuli, with no impact on distance travelled, frequency 728 

of item visitation, or approach latencies. A An example IST with objects is visualized, 729 

showing 6 identical objects in the sample phase, with a novel object introduced after a 1-minute 730 

delay in the test phase. B A DST with objects variation is shown, with an identical test 731 

progression, but instead starts with 6 different objects in the sample phase. C Interaction 732 

measured as time spent with an object was generated using the human-machine hybrid scoring 733 
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approach and visualized using a discrimination ratio for both variations using object stimuli. No 734 

difference in treatment groups is seen in the 6-object IST (n = 64). In the 6-object DST (n = 66), 735 

a significant decrease in novelty preference is seen in the SW group in contrast to the AC group 736 

(p = .04). D The mean novel approach latency in the 6-object IST (n = 72) and 6-object DST (n = 737 

69) variations is shown to be consistent between treatment groups. E To illustrate the frequency 738 

of visitations to the novel object in comparison to the familiar objects, bout counts are visualized 739 

using a discrimination ratio. A preference for novel visitations is seen in the 6-object IST (n = 740 

65) AC and SW groups, with no difference in item visitations in the 6-object DST (n = 66). F 741 

The distance travelled (cm) in the 6-object IST (n = 72) and 6-object DST (n = 69) variations is 742 

comparable across treatment groups. Data represents mean ± SEM. *p < 0.05. Abbreviations: 743 

High-THC Cannabis smoke (SW), high-CBD Cannabis smoke (TI), Air Control (AC). This 744 

figure was created using BioRender.com. 745 

Figure 5. High-THC Cannabis smoke exposure impacts novelty preference under high- 746 

(DST) and low- (IST) memory loads using odor stimuli, with no impact on distance 747 

travelled, frequency of item visitation, or approach latencies. A An example IST with odors 748 

is visualized, showing 6 identical items in the sample phase, with a novel odor introduced after a 749 

1-minute delay in the test phase. B A DST with odors variation is shown, with an identical task 750 

progression, but instead starts with 6 different odors in the sample phase. C Interaction measured 751 

as time spent with an odor was generated using the human-machine hybrid scoring approach and 752 

visualized using a discrimination ratio for both variations using odor stimuli. In the 6-odor IST (n 753 

= 75), a significant decrease in novelty preference is seen in the AC group in comparison to the 754 

SW group (p = .046). Whereas in the 6-odor DST (n = 73), a significant decrease in novelty 755 

preference is seen in the SW group from both the AC (p = .023) and TI (p = .046) groups. D The 756 

mean novel approach latency in the 6-odor IST (n = 79) and 6-odor DST (n = 73) variations is 757 

shown to be consistent between treatment groups. E To illustrate the frequency of visitations to 758 

the novel odor in comparison to the familiar odors, bout counts are visualized using a 759 

discrimination ratio. No differences between treatment groups or 6-odor IST (n = 79) and 6-odor 760 

DST (n = 73) is seen. F Distance travelled (cm) in the 6-odor IST (n = 79) and 6-odor DST (n = 761 

73) variations is comparable across treatment groups. Data represents mean ± SEM. *p < 0.05. 762 

Abbreviations: High-THC Cannabis smoke (SW), high-CBD Cannabis smoke (TI), Air Control 763 

(AC). This figure was created using BioRender.com. 764 
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Figure 6. Boli count following smoke exposure treatment. A significant increase in the 765 

number of boli recorded was observed following Cannabis smoke exposure in comparison to the 766 

Air Control (AC) condition. However, no difference between Skywalker (SW) or Treasure Island 767 

(TI) groups was recorded. **** p < .001. 768 

 769 

 OBJECT IST OBJECT DST ODOR IST ODOR DST 
 Sample* Test* Sample* Test* Sample Test Sample Test 

3 ITEMS 71.45  
±12.1 

47.98 
±6.5 

68.43  
±13.4 

104.43 
±18.9 

31.99#  
±7.3 

58.23 
±5.3 

35.69  
± 8.4 

54.74 
± 5.9 

6 ITEMS 63.50 
±5.4 

34.30 
±4.1 

47.06   
±5. 

50.39 
±6.9 

38.14#   
±7.6 

38.59 
±5.2 

33.83   
± 6.3 

38.20 
± 3.6 

 770 

 771 

Table 1. Summary of all interaction times for validation of the tests summarized in Fig 1. 772 

The mean (± SEM) for the total interaction time seen with stimuli is recorded for each sample 773 

and test phase in the IST and DST with objects or odors. * Significant main effect of Phase on 774 

object IST and DST (p<0.05). # Significant effect of Item Count on exploration times in the 775 

sample phase of the odor IST (p = 0.047). 776 

  777 



High-THC Cannabis smoke impairs incidental memory capacity in male rats 

 

28 

28 

 OBJECT IST OBJECT DST ODOR IST ODOR DST 
 Sample* Test* Sample# Test# Sample& Test& Sample% Test% 

Air Control 36.21  
±2.9 

42.93 
±4.0 

35.61  
±3.2 

39.23 
±3.4 

37.75  
±2.8 

47.78 
±5.8 

39.16  
±3.1 

50.12 
±5.6 

high-THC 36.01  
±3.7 

46.90 
±4.1 

39.65  
±3.5 

49.72 
±4.6 

34.27  
±3.1 

57.94 
±4.8 

35.29 
±2.8 

55.27 
±6.5 

high-CBD 30.09  
±3.0 

33.97 
±2.7 

33.9  
±3.1 

46.96 
±4.2 

31.54  
±2 

36.93 
±5.5 

40.54  
±3.4 

48.03 
±6.1 

 778 

 779 

Table 2. Summary of all interaction times for tests with Cannabis summarized in Figs 2-5. 780 

The mean (± SEM) for the total interaction time seen with stimuli is recorded for the sample and 781 

test phases in the different 6- object and 6- odor IST and DST across the Air Control, high-THC, 782 

and high-CBD treatment groups. * Significant effect of Treatment (p = 0.019) and of Phase (p = 783 

0.012) on object IST. # Significant effect of Phase (p = 0.0058) on object DST. & Significant 784 

effect of Treatment (p = 0.025) and Phase (p = 0.0004) on odor IST. % Significant effect of 785 

Phase (p = 0.0019) on odor DST. 786 

  787 
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 AC-SW 
Cohen’s d 

AC-SW 
P value 

AC-TI 
Cohen’s d 

AC-TI 
P value 

6-object IST -0.25 [95.0%CI -
0.856, 0.357] 

0.409 0.291 [95.0%CI -
0.323, 0.872] 

0.319 

6-object DST -0.655 [95.0%CI -
1.27, -0.035] 

0.03* 0.118 [95.0%CI -
0.507, 0.716] 

0.7 

6-odor IST -0.783 [95.0%CI -
1.41, -0.194] 

0.0058** 0.0239 [95.0%CI -
0.539, 0.637] 

0.936 

6-odor DST -0.874 [95.0%CI -
1.47, -0.228] 

0.0042** -0.172 [95.0%CI -
0.727, 0.413] 

0.544 

 788 

Table 3. Summary of the effect sizes (Cohen’s d) and corresponding p-values for Fig 789 

4C and 5C. The unpaired Cohen’s d [confidence interval, lower bound; upper bound) for 790 

interaction times seen between novel and familiar stimuli is recorded for the test phases in 791 

the 6- object and 6- odor IST and DST across the Air Control, high-THC, and high-CBD 792 

treatment groups. * P < .05 ** P < .01 ***P < .001. 793 
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Extended Data Figure Captions 795 

 796 

Fig 2-1. Mean tracking confidence for each point-of-interest, by video. To calculate the mean 797 

tracking confidence for each video, the average of the likelihood column associated with each 798 

point of interest was calculated. 799 

 800 

Fig 2-2. Model hyperparameters used for classifier training. A meta-data csv file is included 801 

under “assessment + logs” for each classifier within our GitHub repository. 802 

Previous studies have shown that creating a balanced dataset by using the model 803 

hyperparameters of “random under sampling” or “random over sampling” lead to better classifier 804 

performance; however, we found that using these features dramatically decreased classifier 805 

performance and lead to equal classifier predictions across the data frame. Therefore, we chose 806 

to not use these hyperparameters for analysis, and accounted for the unbalanced dataset by 807 

setting a relatively low discrimination threshold.  For both classifiers, a discrimination threshold 808 

of 0.35 and a minimum bout duration of 50ms was used (Extended Data Fig 2-3). 809 

 810 

Fig 2-3. Representative plot of classifier predictions across a complete video (9000 frames, 5 811 

min video). We chose a discrimination threshold of 0.35 as it corresponds to the middle segment 812 

of obvious probability spikes and excludes the majority of noise below 0.2. We assessed model 813 

performance in two ways, both of which are integrated in the SimBA GUI (Extended Data Fig 2-814 

2). First, we generated performance metrics (precision, recall, F1) by randomly splitting the 815 

aggregate training set (all human-annotated frames from all videos within the project) into 80% 816 

training frames and 20% test frames. Said differently, for a given behavioral video, a fraction of 817 

interaction-containing frames was used for model training, then a smaller fraction of frames was 818 

used for testing if the model can accurately predict if rat-stimulus interaction occurs in each test 819 

frame. As shown below, we found that both the object and odour classifiers generated excellent 820 

performance metrics when assessed in this manner. However, a fundamental problem with this 821 

assessment method is that for a given interaction bout, there may be both test and training 822 

frames, so the model is predicting interaction between two known sub-bouts of interaction 823 

(visualized- 1 = known interaction, test = test frame that the model must make a prediction on: 1-824 

1-1-1-1-test-1-1-1-1). Therefore, to assess performance without the confound of intra-bout test 825 

frames, we segregated the aggregate training into interaction bouts, then split the segregated 826 

training set into 80% training bouts and 20% test bouts. We found that the performance of the 827 

object classifier changed marginally with this change, but performance metrics for the odor 828 

classifier significantly decreased when assessed in this manner. While we content that assessing 829 

classifier performance by-bout is a more conservative and representative method, an important 830 

caveat is that classifier performance on a completely model-naïve video is not assessed by either 831 

of these methods. This is important to consider because researchers will typically implement this 832 

analysis method to automatically quantify behavior for a large dataset, where only a fraction of 833 

this dataset is used for training. We did not include a by-video classifier analysis as this is not 834 

integrated into SimBA, but we contend that future research and software development should 835 

implement this performance assessment method to capture the accuracy of classifier predictions 836 

most accurately on model naïve behavioral videos. 837 

 838 

Fig 2-4. Precision recall curve visualizing changes in precision, recall, and F1 with classifier 839 

training. Raw data is included under “assessment + logs” for each classifier within our GitHub 840 
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repository. Recall, precision, and by extension the F1 score are calculated from the entries of a 841 

confusion matrix. A confusion matrix tells us, given a set of observations belonging to at least 2 842 

different classes and a classifier that attempts to label each, how many and what type of errors 843 

were made. The diagonal of the confusion matrix is the correct observations, the off diagonal are 844 

the errors. For a binary classifier, we are generally focused on one class over the other, thus the 845 

metrics we derive are chosen to represent how we did for the most important class.  In our case 846 

'interaction' is the class we care about. In quantifying how our classifier for 'interaction' did, we 847 

calculate the recall and precision. Recall is the proportion of all the possible 'interaction' 848 

observations that our classifier predicted correctly. That is, the number of True Positives (TP) 849 

divided by the total number of 'interaction' observations (note the maximum number of True 850 

Positives is all the 'interaction' observations, in which case the recall equals 1, so a classifier that 851 

always predicts interaction will have perfect recall). Now there are many other metrics that could 852 

be computed, but the next most natural is the precision. Precision is the proportion of predicted 853 

'interaction' observations that were actual 'interactions'. Or mathematically, the number of True 854 

Positives divided by the total number of times our classifier predicted 'interaction' (note it's not 855 

so easy to get perfect precision). Now we have 2 perfectly good numbers that quantify how our 856 

classifier did, the proportion of overall 'interactions' that were recovered (recall) and the 857 

proportion of times our classifier predicted 'interaction' and was correct (precision). It's not clear 858 

which is more important, so we combined the two as the F1 score as the harmonic mean of recall 859 

and precision. Why harmonic mean? We want an average of some kind, and the harmonic mean 860 

is the smallest of the 3 Pythagorean means (arithmetic mean, geometric mean, and harmonic 861 

mean). So, to have a high F1 score you must have high precision and recall, either one will drag 862 

the F1 score down non-linearly. 863 

 864 

Fig 3-1. Inter-rater variability analysis between human scorers of varying experience levels. In 865 

short, 20 behavioral videos (counterbalanced for IST/DST and objects/odors) were scored for 866 

rat-stimulus interaction by three independent scorers of differing experience levels (master, 867 

experienced, beginner). We found a strong correlation between scorers of all experience levels, 868 

but a comparatively weaker correlation between experienced and beginner scorers. 869 

 870 

Fig 3-2. Proportion of excluded videos from verification ranks 4 and 5 as described in Fig 3C,D. 871 

The proportion of videos excluded did not differ significantly when grouped by treatment (A) or 872 

stimuli type (B). 873 

 874 

875 
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