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1  |  INTRODUC TION

Nociceptive or acute pain is an adaptive, neuroprotective and short- 

lived sensation that promotes the survival of an organism by produc-

ing behavioural adaptations that act to prevent potential or ongoing 

injury (Woolf et al., 2004). Chronic pain, often viewed as a maladap-

tive response, is identified as pain that lasts beyond the expected 

time required for normal tissue healing, typically 3– 6 months. It af-
fects up to 40% of US adults and is estimated to cost $560 billion 

per annum in lost productivity and medical treatment (Dahlhamer 

et al., 2018).

Neuropathic pain is a form of chronic pain that arises from lesions 

or damage to the somatosensory nervous system and surprisingly 

has only recently been added to the 11th edition of the International 
Classification of Diseases (Raja et al., 2020; Scholz et al., 2019). Ap-

proximately 25% of individuals diagnosed with chronic pain suffer 

from neuropathic pain (Torrance et al., 2006). Neuropathic pain can 

be caused by diseases such as diabetes and multiple sclerosis, physical 

trauma resulting from injury and surgery, viruses such as Herpes and 

HIV and chemotherapy medications such as paclitaxel which affect 
the peripheral and/or central nervous system (Colloca et al., 2017). 

This condition is associated with a highly abnormal pain syndrome 

Received: 31 May 2023  | Revised: 29 August 2023  | Accepted: 4 September 2023

DOI: 10.1111/jnc.15964  

R E V I E W

Cannabis constituents for chronic neuropathic pain; reconciling 
the clinical and animal evidence

Eddy Sokolaj  |   Neda Assareh  |   Kristen Anderson  |   Karin R. Aubrey  |   
Christopher W. Vaughan

Eddy Sokolaj and Neda Assareh contributed equally to this work. 

This article is part of the special issue “Pain”.  

Abbreviations: 2- AG, 2- arachidonoyl- glycerol; 5- HT1A, Serotonin 1A receptor; AM281, 1- (2,4- Dichlorophenyl)- 5- (4- iodophenyl)- 4- methyl- N- 4- morpholinyl- 1H- pyrazole- 3- 

carboxamide; Anandamide, N- arachidonoyl- ethanolamine; CB1/2, cannabinoid receptor 1/2; CBD, cannabidiol; CBM, cannabis- based medicine; ED50, median effective dose; FAAH, 

fatty acid amide hydrolase; GABA, gamma- aminobutyric acid; GlyR, glycine receptor; GPCR, G- protein coupled receptor; JZL195, 4- [(3- Phenoxyphenyl)methyl]- 1- piperazinecarboxylic 

acid 4- nitrophenyl ester; MAGL, monoacylglycerol lipase; PAM, positive allosteric modulators; PPARs, peroxisome proliferator- activated receptors; THC, delta- 9- tetrahydrocannabinol; 

TRP, transient receptor potential; TRPV1/2, transient receptor potential vanilloid 1/2; VGCC, voltage gated calcium channel; VGCS, voltage gated sodium channel.

Pain Management Research Institute, 
Kolling Institute of Medical Research, 
Northern Clinical School, Royal North 

Shore Hospital, University of Sydney, 

Sydney, New South Wales, Australia

Correspondence
Eddy Sokolaj, Pain Management Research 

Institute, Kolling Institute of Medical 
Research, Northern Clinical School, Royal 

North Shore Hospital, University of 

Sydney, Sydney, NSW, Australia.

Email: esok5506@uni.sydney.edu.au

Abstract
Chronic neuropathic pain is a debilitating pain syndrome caused by damage to the 

nervous system that is poorly served by current medications. Given these problems, 

clinical studies have pursued extracts of the plant Cannabis sativa as alternative 

treatments for this condition. The vast majority of these studies have examined can-

nabinoids which contain the psychoactive constituent delta- 9- tetrahydrocannabinol 

(THC). While there have been some positive findings, meta- analyses of this clinical 

work indicates that this effectiveness is limited and hampered by side- effects. This 

review focuses on how recent preclinical studies have predicted the clinical limita-

tions of THC- containing cannabis extracts, and importantly, point to how they might 

be improved. This work highlights the importance of targeting channels and recep-

tors other than cannabinoid CB1 receptors which mediate many of the side- effects 

of cannabis.

K E Y W O R D S
cannabidiol, cannabis, delta- 9- tetrahydrocannibinol, ion channel, neuropathic pain, receptor

www.wileyonlinelibrary.com/journal/jnc
mailto:
https://orcid.org/0009-0009-8081-8227
https://orcid.org/0000-0001-8014-0967
https://orcid.org/0009-0002-4488-5202
https://orcid.org/0000-0002-1808-4041
https://orcid.org/0000-0003-4314-7689
https://onlinelibrary.wiley.com/doi/toc/10.1111/(ISSN)1471-4159.pain
mailto:esok5506@uni.sydney.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjnc.15964&domain=pdf&date_stamp=2023-09-25


2  |    SOKOLAJ et al.

that includes spontaneous pain (pain in the absence of a stimulus), 

allodynia (pain caused by a non- painful stimulus such as cool and light 

touch) and hyperalgesia (exaggerated responses to painful stimuli).

Chronic pain treatment is symptomatic and difficult given its 

complex and widespread profile. Indeed, a polypharmacy approach 
is often used for this condition. Current pharmacological treatments 

are associated with numerous acute adverse effects including diz-

ziness, sedation and sleep disorders, which can limit their clinical 

value. Importantly, there are also substantial long- term problems in-

cluding issues such as drug dependence and abuse. Thus, issues with 

the pain- relieving efficacy and adverse effects of all current drugs 

mean that they are effective in less than half of chronic pain suf-

ferers (Finnerup et al., 2015). As such, there is a significant need to 

develop new therapies for chronic neuropathic pain which could act 

as first- line therapies or second- line agents to augment current ther-

apies. While this review is focused on pharmacological treatments, 

it is important to note that neuropathic pain is associated with debil-

itating psychological comorbidities, such as depression, anxiety and 

sleep disorders and that psychological interventions are highly ben-

eficial, especially given their lack of drug- linked side effects (Cohen 

et al., 2021; Williams et al., 2020).

2  |  C ANNABIS AND THE ENDOGENOUS 
C ANNABINOID SYSTEM

Extracts of the Cannabis sativa plant have long been utilised for not 

only its recreational effects but also its medicinal qualities such as 

pain relief (Notcutt et al., 2004; Ware et al., 2005). Recreational use 

and widespread abuse, however, have posed a major barrier to ex-

ploiting the potential of cannabis- based medicines (CBMs).

2.1  |  Cannabis sativa and its constituents

Over the past 50 years, unfolding evidence has revealed potentially 
powerful therapeutic properties of CBMs, including plant extracts 

(phytocannabinoids) and their synthetic derivatives. While Canna-

bis sativa contains hundreds of distinct chemical constituents, this 

review will focus on only two of these. The major psychoactive can-

nabis constituent is delta- 9- tetrahydrocannabinol (THC) which has 

been shown to have analgesic, anti- inflammatory and anti- emetic 

properties in animal studies (Borgelt et al., 2013; Robson, 2014). 

The primary non- psychoactive cannabis constituent is cannabidiol 

(CBD), which has therapeutic potential in managing chronic pain, 

anxiety, epilepsy and neuroprotection (De Gregorio et al., 2019; 

Robson, 2014). CBD is the first and only non- psychoactive phy-

tocannabinoid approved in the US for medical use, for treating 

seizures in infants (Devinsky et al., 2019). These advances in our 

understanding and shifts in perception about the therapeutic po-

tential of cannabis have propelled the development of CBMs.

2.2  |  The endogenous cannabinoid system

Over the past few decades, it has been shown that cannabis, 

including its extracts and associated synthetic compounds, pro-

duces its physiological effects by acting on an endogenous can-

nabinoid (endocannabinoid) system (Winters & Vaughan, 2021). 

The endocannabinoid system is a lipid signalling system composed 

of endogenous cannabinoids, target proteins such as cannabi-

noid receptors and the enzymes involved in their production and 

degradation (Lu & Mackie, 2021). N- arachidonoyl- ethanolamine 

(anandamide) and 2- arachidonoyl- glycerol (2- AG) are two of the 

most common endocannabinoids found throughout the human 

body and brain. These compounds are involved in various func-

tions including controlling mood, memory, anxiety and pain (Wolf 

et al., 2020).

It has long been known that synthetic cannabinoids and en-

docannabinoids modulate activity within the nervous system 

by presynaptically inhibiting synaptic transmission. In the early 
2000s, it was demonstrated that endocannabinoids achieve this 

by a mechanism fundamentally different to other neurotransmit-

ters, a phenomenon known as retrograde signalling. In this form of 
signalling, endocannabinoids are synthesised ‘on- demand’ within 

the postsynaptic neuronal cell body and travel “backwards” to 

activate pre- synaptic receptors, thereby inhibiting the release of 

neurotransmitters, such as glutamate and GABA, onto the post-

synaptic neuron (Castillo et al., 2012; Kano et al., 2009). Their ac-

tivity is terminated by their uptake into neurons and glia, possibly 

via a transporter and subsequent enzymatic degradation (Giuf-

frida et al., 2001; Lu & Mackie, 2021). In this regard, the actions 
of anandamide and 2- AG are terminated by their hydrolysis via 

the enzymes fatty acid amide hydrolase (FAAH) and monoacyl-

glycerol lipase (MAGL), respectively (Blankman & Cravatt, 2013; 

Fowler, 2015).

It is important to note that (endo)cannabinoids produce 
not only short- term changes in synaptic strength that reverse 

upon their washout/elimination but also long- term changes in 

synaptic transmission (Winters & Vaughan, 2021). This long- 

term plasticity underlies many vital functions such as learning, 

memory and fear and also pathological maladaptations in brain 

function (de Melo Reis et al., 2021; Lu & Mackie, 2016; Riedel & 

Davies, 2005).

Synthetic cannabinoids, cannabis constituents, such as THC and 

CBD, and endocannabinoids produce their effects by acting on a 

range of target proteins. While many of the well- known effects of 

cannabinoids are mediated by a class of Gi/o- coupled cannabinoid 

G- protein coupled receptors (GPCRs), they also act via a range of 

other GPCRs, ligand- gated ion channels, voltage- gated ion chan-

nels and enzymes involved in endocannabinoid degradation (Howl-

ett, 2002; Pertwee, 2005). A description of the major targets is 

provided later in the review, focusing on those implicated in pre- 

clinical neuropathic pain studies (Section 4.6).
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    |  3SOKOLAJ et al.

3  |  CLINIC AL EFFIC ACY AND SAFET Y OF 
C ANNABINOIDS FOR NEUROPATHIC PAIN

As permissive cannabis policies become more prevalent globally, it 

is critical to identify optimal strategies that promote the benefits 

of CBMs whilst reducing their adverse effects. Here we first focus 

on peer- reviewed clinical studies that have examined CBMs for 

non- cancer chronic neuropathic pain, and then the meta- analysis 

of chronic pain studies. It is important to note that most of these 
studies have investigated the effects of whole cannabis, THC and its 

synthetic analogues nabilone and dronabinol and THC:CBD combi-

nations which are known as nabiximols.

3.1  |  Clinical studies: Whole cannabis

There have been a number of studies that have examined the effec-

tiveness of whole cannabis on different types of neuropathic pain. 

Smoked cannabis has been shown to reduce pain intensity scores to 

a greater extent than placebo cigarettes in individuals suffering from 

HIV- associated, diabetic, post- surgery/traumatic and other unspeci-
fied forms of neuropathic pain (Abrams et al., 2007; Corey- Bloom 

et al., 2012; Ellis et al., 2009; Finnerup et al., 2015; Ware et al., 2005, 

2010; Wilsey et al., 2008). Vapourised cannabis has also been re-

ported to significantly improve symptoms in various forms of neu-

ropathic pain (Eisenberg et al., 2014; Wilsey et al., 2013, 2016). In 
addition, sublingual THC- enriched cannabis oil has been reported to 

improve the pain associated with fibromyalgia (Chaves et al., 2020). 

Interestingly, in some of these studies, low- dose cannabis was re-

ported as having a beneficial pain- relieving effect that approached 

that of higher- dose cannabis, but with fewer psychoactive side ef-

fects. However, it is important to note that not all of these studies 

have been randomised, double- blinded and placebo- controlled.

3.2  |  Clinical studies: THC

A number of randomised, double- blind, placebo- controlled clinical tri-

als have examined the effects of THC on a range of neuropathic pain 

states. In a number of studies, oral dronabinol, nabilone or THC pro-

duced greater pain relief than placebo in patients with diabetes, mul-

tiple sclerosis and fibromyalgia (Skrabek et al., 2008; Toth et al., 2012; 

Zajicek et al., 2012). Similarly, oromucosal THC produced greater 

pain relief than placebo in various forms of neuropathic pain (Wade 

et al., 2003; Weizman et al., 2018). By contrast, oral THC and dronabi-

nol did not have a significantly greater effect than placebo in patients 

with cervical dystonia and patients with polyneuropathy, post- herpetic 

neuralgia and peripheral nerve injury and post- surgery patients (Buggy 

et al., 2003; Zadikoff et al., 2011; Zubcevic et al., 2023). While not 

placebo- controlled, a recent large cohort study found that oral dronab-

inol provided effective pain relief in a range of treatment- resistant neu-

ropathic pain conditions (Ueberall et al., 2022). Interestingly, another 
study has shown that oral dronabinol did not produce a significant 

reduction in multiple sclerosis- related pain until 10 weeks after com-

mencing treatment (Schimrigk et al., 2017). In all of these studies, ad-

verse effects were generally reported as being predictable and well 

tolerated, although these led to some participant dropouts. These 

studies indicate that THC has potential as a treatment for neuropathic 

pain, including treatment- resistant conditions. However, this is gener-

ally associated with non- serious cannabis- like adverse effects that will 

lead to patient dropouts.

3.3  |  Clinical studies: CBD

Compared to THC, there are few clinical trials on CBD. In one study, 
oromucosal CBD produced greater pain relief than placebo in patients 

with chronic radicular neuropathic pain (Wade et al., 2003). By con-

trast, oral CBD did not have a significantly greater effect than placebo 

in patients with peripheral neuropathic pain (Zubcevic et al., 2023). 

Recently, it has been shown that topical CBD reduces the focal pain 

associated with peripheral neuropathy (Xu et al., 2020). Thus, evidence 

supporting the therapeutic benefits of CBD remains to be established.

3.4  |  Clinical studies: Nabiximols

Nabiximols such as Sativex, which is a 1:1 THC:CBD formulation, 

have been examined in a number of clinical studies. The rationale for 

examining combination THC:CBD is based on the long- held hypothe-

sis that it provides a powerful synergistic analgesic interaction whilst 

quelling the THC- induced psychoactive side effects (Russo, 2011). 

To this end, it has been shown that combined THC:CBD has fewer 

adverse effects than THC alone in both neuropathic pain and pain- 

free people (Morgan et al., 2010; Ueberall et al., 2022). However, a 

more recent randomised controlled trial has shown that CBD does 

not protect against THC- induced adverse effects, at a range of 

THC:CBD dose ratios, including standard 1:1 ratios and other com-

binations with a higher CBD content (Englund et al., 2023).

In some studies, oromucosal Sativex has been shown to re-

duce pain intensity in people with multiple sclerosis and various 

forms of peripheral neuropathic pain (Nurmikko et al., 2007; Rog 

et al., 2005; Serpell et al., 2014; Wade et al., 2003). Furthermore, 

oromucosal nabiximols provided superior pain relief and fewer ad-

verse effects compared to oral dronabinol alone in patient popula-

tions resistant to standard neuropathic pain treatments (Ueberall 

et al., 2022). By contrast, other studies have provided negative 

data on nabiximols. Oromucosal Sativex failed to produce a signif-

icant pain improvement compared to placebo in patients with bra-

chial plexus avulsion and diabetic neuropathy (Berman et al., 2004; 

Selvarajah et al., 2010). Similarly, oral nabiximol did not have 

a significantly greater effect on pain scores than placebo in pa-

tients with various forms of peripheral neuropathic pain (Zubcevic 

et al., 2023). These studies indicate that nabiximols have potential 

as a treatment for neuropathic pain, although it is unclear whether 

they have superior efficacy and safety compared to THC alone.
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4  |    SOKOLAJ et al.

3.5  |  Clinical meta- analyses

To gain a better understanding of the overall efficacy and safety of the 

cannabinoids, there have been a number of meta- analyses examining 

the impact of these CBMs on chronic pain. Some of these meta- analyses 

have reported that CBMs have a beneficial pain- relieving impact on 

chronic neuropathic and non- cancer pain (Bialas et al., 2022; Dykukha 

et al., 2021; Johal et al., 2020). By contrast, others have reported that 

they have only a modest effect, or no pain- relieving impact, especially 

when compared to placebo (Canavan et al., 2022; Gedin et al., 2022; 

Meng et al., 2017; Mucke et al., 2018; Sainsbury et al., 2021; Stockings 

et al., 2018; Tyree et al., 2019; Walitt et al., 2016; Wang et al., 2021; 

Whiting et al., 2015; Wong et al., 2020). Furthermore, these studies 

indicate that CBMs produce adverse effects, which lead to dropouts, 

although these are mostly reported as non- serious (Meng et al., 2017; 

Mucke et al., 2018; Whiting et al., 2015; Wong et al., 2020).

The overall implication of the meta- analyses is that the future of 

CBMs for chronic neuropathic pain is not promising. However, there 

are a number of questions that highlight important gaps in our knowl-

edge. Some of these issues relate to the specific types of CBM, their 

dosage and route of delivery and potential interactions with other 

medications. For example, while there is little precise data on compar-

isons between the different cannabinoids, there are some suggestions 

that THC (and its analogues) alone provides better pain relief, although 

others have reported no differences between CBMs (Johal et al., 2020; 

Whiting et al., 2015). In addition, there are conflicting reports as to 
whether oral, smoked or oromucosal routes of administration pro-

vide superior pain relief (Aviram & Samuelly- Leichtag, 2017; Johal 

et al., 2020; Tyree et al., 2019; Wang et al., 2021). A potential problem 

in these comparisons is the conflation of drug type and route of admin-

istration, for example, in a recent study it was suggested that oromu-

cosal nabiximols are superior to oral dronabinol (Ueberall et al., 2022).

Finally, there is reasonably clear clinical evidence that CBMs are 

more effective when administered long- term (Giossi et al., 2022; 

Johal et al., 2020). However, it is unclear whether specific types 

of neuropathic pain might be better treated by CBMs. While most 

meta- analyses have examined their utility for a variety of chronic 

pain syndromes, only a few have examined specific forms of neu-

ropathic pain or treatment- resistant neuropathic pain. The mixed 

conclusions between these systemic reviews and meta- analyses 

only emphasise the need for a more nuanced approach to clinical 

research for CBMs and neuropathic pain.

4  |  PRE-  CLINIC AL ANIMAL STUDIES

There is overwhelming evidence from pre- clinical animal studies 

that synthetic cannabinoid receptor agonists are highly effective in 

relieving neuropathic pain (Rahn & Hohmann, 2009). This is interest-

ing given the above inconclusive evidence for cannabinoids in the 

clinical setting. However, unlike clinical studies, most animal stud-

ies of neuropathic pain are devoted to investigating the effects of 

synthetic compounds, such as agonists and degradation inhibitors. 

Below, we focus on studies that have examined THC, CBD and na-

biximols in animal models of neuropathic pain. Given its prevalence 

in clinical studies, the emphasis will be on systemic delivery.

4.1  |  Pre- clinical studies: THC

A number of rodent studies have shown that systemic THC admin-

istration reduces mechanical and thermal allodynia in nerve- injury, 

diabetic and chemotherapy drug models of neuropathic pain (Casey 

et al., 2017; De Vry et al., 2004; Harris et al., 2016; King et al., 2017; 

Linher- Melville et al., 2020; Mitchell et al., 2021; Williams 

et al., 2008). It is important to note that, unlike the clinical data, THC 
has high efficacy in rodents, virtually abolishing allodynia at high 

doses. However, THC also produces prototypical cannabinoid- like 

side effects, including catalepsy, disrupted motor coordination, se-

dation and hypothermia (Boggs et al., 2018; Hayakawa et al., 2008; 

Taffe et al., 2015; Varvel et al., 2006).

The apparent disparity in the reported efficacy of THC between 

pre- clinical and clinical studies could be because of a number of factors. 

Besides mixed patient populations, one such factor is the wide range of 

doses used in different studies. Recent studies have addressed this by 

examining the dose– response profile of THC to assess the therapeutic 

window between beneficial pain- relieving effects and side effects; this 

can be quantified by the therapeutic index which is the ratio of the ED50 

for side effects versus anti- allodynia. In doing so, it has been demon-

strated that subcutaneously injected THC has a relatively modest ther-

apeutic index of approximately 5 (Casey et al., 2017). Consequently, 

significant side effects including sedation, motor incoordination and 

catalepsy were observed at THC doses which produce sub- maximal 

reductions in allodynia. Nonetheless, it might be noted that the thera-

peutic window of THC is better than that of subcutaneously injected 

synthetic non- selective cannabinoid receptor 1/2 (CB 1/2) agonists, 

such as WIN55212, CP55950 and HU210, which display no window 
between analgesia and side effects (therapeutic index approximately1; 

Fox et al., 2001; Kazantzis et al., 2016; Scott et al., 2004). Addition-

ally, orally administered THC has a poor therapeutic index (between 1 

and2; Mitchell et al., 2021). The reason for this difference is unclear but 

may be related to the relatively lower efficacy of THC at CB1 receptors 

compared to synthetic agonists (Adamson Barnes et al., 2016).

Overall, these pre- clinical findings provide a basis for the rela-

tively poor effectiveness of THC observed in clinical studies. The 

animal studies indicate that while THC is highly effective in reduc-

ing neuropathic pain symptoms such as allodynia, this only occurs 

at doses where substantial side effects are observed. Indeed, this 
would equate to relatively high doses in clinical studies where intol-

erable cannabis- like adverse effects have been reported.

4.2  |  Pre- clinical studies: CBD

More recently, there has been an increasing interest in the actions 

of CBD in neuropathic pain models. Delivery of CBD via various 
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routes of administration alleviates the mechanical and cold allo-

dynia associated with rodent neuropathic pain models induced by 

nerve and spinal cord injury, chemotherapy drugs and diabetes 

(Casey et al., 2017, 2022; Costa et al., 2007; Harris et al., 2016; 

King et al., 2017; Li et al., 2018; Linher- Melville et al., 2020; Mitchell 

et al., 2021; Toth et al., 2010; Ward et al., 2011, 2014). Importantly, 
maximally effective doses of CBD produce this ‘pain- relief’ without 

any of the cannabis- like side effects observed with THC and combi-

nation THC:CBD (Casey et al., 2017; Mitchell et al., 2021). Thus, CBD 

has a therapeutic index in excess of 10– 50.

It is important to note that in some studies, CBD has been re-

ported as having less than half the maximal anti- allodynic efficacy of 

THC (Casey et al., 2017; Mitchell et al., 2021). This could be partially 

because of its poor oral bioavailability and/or rapid and variable 

degradation (Hlozek et al., 2017; Lucas et al., 2018). To overcome 

this, there have been some attempts to improve its bioavailability 

and stability, such as unique delivery techniques and metabolically 

stable analogues (Matarazzo et al., 2021; Nutt et al., 2022; Pertwee 

et al., 2018).

4.3  |  Pre- clinical studies: Combination THC:CBD 
(nabiximols)

As with clinical studies, there has been substantial pre- clinical inter-

est in the effects of THC:CBD combinations in animal neuropathic 

pain models. Intraperitoneal administration of a 1:1 ratio of THC:CBD 
has been shown to reduce the development of paclitaxel and nerve- 

injury- induced mechanical allodynia when given prior to or just after 

induction of the neuropathic pain model (King et al., 2017; Linher- 

Melville et al., 2020). In addition, CBD combined with a homo-

logue of THC, tetrahydrocannabivarin, has similar effectiveness in 

the paclitaxel model (Kumar Kalvala et al., 2022). In a nerve- injury 
model of neuropathic pain, it has been demonstrated that subcu-

taneous injection of combination THC:CBD after the development 

of neuropathic pain reduces mechanical and cold allodynia (Casey 

et al., 2017). Thus, nabiximols are effective in neuropathic pain mod-

els when administered as prophylactic and therapeutic treatment 

regimens.

Isobolographic analysis of the dose– response analysis in these 
studies, however, reveals some important features of nabiximols 

(Casey et al., 2017; King et al., 2017). There is a highly synergistic 

analgesic interaction, with a 1:1 combination of THC:CBD displaying 

a 10– 200- fold greater potency than that predicted for a simple ad-

ditive interaction. Consequently, doses of THC and CBD which are 

ineffective when administered individually, produce significant re-

ductions in allodynia when given together. While interesting, this an-

algesic synergy would mean nothing if there was an equal synergistic 

THC:CBD interaction in the production of side effects. Remarkably, 

it was observed that there was only an additive side effect interac-

tion between THC and CBD when injected subcutaneously (Casey 

et al., 2017). While this lack of side effect synergy needs confirma-

tion in other neuropathic pain models, it indicates that nabiximols 

can provide substantial relief from neuropathic pain in the absence 

of cannabis- like side effects.

It would appear difficult to reconcile this pre- clinical pain- 
relieving nabiximol synergy with the clinical observations. The 

isobolographic analysis indicates there are distinct low and high- 

dose actions of combination THC:CBD in the animal preclinical work 

(Casey et al., 2017). Low- dose combination THC:CBD is devoid of 

side effects but its anti- allodynic efficacy is relatively low. At high 

doses, combination THC:CBD is indistinguishable from THC, pro-

ducing a near abolition of allodynia and significant cannabis- like 

side effects. This indicates that, like THC, nabiximols will only have 

low pain- relieving efficacy at the low doses where side effects are 

observed.

4.4  |  Pre- clinical studies: Route of administration

While most of the above pre- clinical studies use more direct routes 

of administration, such as intraperitoneal and subcutaneous injec-

tion, a number of clinical trials have focussed on oral administra-

tion. Recently, it has been shown that oral delivery of THC, CBD 

and combination THC:CBD reduces nerve- injury- induced allodynia 

(Dumbraveanu et al., 2023; Linher- Melville et al., 2020; Mitchell 

et al., 2021). Unlike more direct injection routes of administration, 

oral THC:CBD only has a moderately synergistic interaction in re-

ducing allodynia and producing side effects. Interestingly, THC:CBD 
combinations with a higher CBD content (1:8 and 1:80 THC:CBD) 

had an additive anti- allodynic interaction, and surprisingly, a mildly 

synergistic side effect interaction (Mitchell et al., 2021). Rather 

than a pharmacodynamic mechanism, this is likely to be because of 

pharmacokinetic interactions in the metabolism of THC and CBD. It 
has been shown that CBD undergoes rapid metabolism (to inactive 

forms) which reduces the breakdown of THC (Hayakawa et al., 2008; 

Hlozek et al., 2017; Lucas et al., 2018; Varvel et al., 2006), such that 

the CNS exposure to THC is likely to be higher in these THC:CBS 

combinations. Overall, this poor therapeutic profile provides a basis 

for the modest clinical efficacy and associated adverse effects of 

orally delivered THC- containing CBMs observed in clinical studies.

Issues with centrally mediated side effects can be circumvented 
by other approaches, such as site- specific delivery. It is known that 
while the cannabis- like side effects of cannabinoids are mediated by 

the brain, its analgesic effects are also mediated by the spine and 

even the periphery (Clapper et al., 2010; Jhaveri et al., 2006; Martin 

et al., 1999; Smith & Martin, 1992). Accordingly, intrathecal delivery 

of synthetic non- selective cannabinoid receptor agonists reduces al-

lodynia in a range of neuropathic pain models (Fox et al., 2001; Hama 

& Sagen, 2011; Lim et al., 2003; Rahn et al., 2007; Vuong et al., 2008; 

Zhu et al., 2009). It is therefore not surprising that intrathecal de-

livery of THC and combination THC:CBD also produces efficacious 

reductions in allodynia (Casey et al., 2022; Xiong et al., 2012). Inter-
estingly, intrathecal CBD also reduces allodynia in neuropathic pain 

models (Casey et al., 2022; Dos Santos et al., 2023; Jesus et al., 2019; 

Xiong et al., 2012). The pain- relieving effects of THC, CBD and 
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combination THC:CBD are not associated with any cannabis- like 

side effects, even at doses 10– 20 times greater than those at which 

a substantial reduction in nerve- injury- induced anti- allodynia is ob-

served. Furthermore, intrathecal combination THC:CBD displayed a 

mildly synergistic two- fold increase in analgesic potency, compared 

to its predicted additive effect (Casey et al., 2022). In addition to 
the spinal route, there may also be promise in targeting peripheral 

cannabinoid receptors using drugs that do not pass the blood– brain 

barrier (Guindon & Hohmann, 2009).

4.5  |  Pre- clinical studies: Chronic drug delivery

While the majority of the above studies have examined the acute 

actions of the phytocannabinoids THC and CBD, some studies have 

examined their effectiveness during chronic administration. Pro-

longed administration of THC, CBD and combination THC:CBD re-

duces the allodynia associated with animal neuropathic pain models 

(Costa et al., 2007; King et al., 2017; Linher- Melville et al., 2020; 

Silva- Cardoso et al., 2021; Ward et al., 2011, 2014). Interestingly, 
CBD- induced analgesia is observed even at low doses which are in-

effective when administered acutely (King et al., 2017). These stud-

ies indicate that chronic CBD treatment might provide an alternative 

therapeutic approach for chronic neuropathic pain that has seldom 

been explored in the clinical setting.

4.6  |  Pre- clinical studies: 
Pharmacology and mechanisms

The mechanisms of cannabinoid actions in neuropathic pain states 

have been examined exclusively in animal models. Numerous studies 

have shown that THC and CBD act via not only cannabinoid GPCRs 

but also a range of other targets (Figure 1). It is important to note 
that the in vivo actions of cannabinoids in neuropathic pain models 

are not easily predicted by the targets identified in in vitro studies 

(McPartland et al., 2015). Thus, the following mechanistic discussion 

focuses on targets which have been linked to cannabinoid actions 

in neuropathic pain states, starting with the individual actions of 

THC and CBD in neuropathic pain states, followed by THC:CBD 

combinations. For more detailed general information on cannabi-

noid targets and mechanisms, the reader is referred to more detailed 

reviews (Castillo- Arellano et al., 2023; De Petrocellis et al., 2017; 

Howlett, 2005; Muller et al., 2018; Pertwee, 2008; Starowicz & 

Finn, 2017).

4.6.1  |  Cannabinoid GPCRs

A major target of cannabinoids is a class of Gi/o- coupled CB1 and 

CB2 GPCRs which inhibit intracellular signalling cascades, such as 

adenylyl cyclase, and voltage- gated calcium channels, as well as ac-

tivating inward rectifying potassium channels and various protein 

kinases (Howlett, 2005). CB1 receptors are expressed at very high 

levels throughout the nervous system, particularly in brain regions 

involved in memory, anxiety and pain. While CB2 receptors are 

mainly expressed in immune- related cells such as microglia, they are 

present within the central nervous system and are known to be up-

regulated in chronic pain states (Jordan & Xi, 2019).

While cannabinoid CB1 and CB2 receptor agonists have been 

shown to reduce neuropathic pain signs such as allodynia and hy-

peralgesia in rodents. However, the relative roles of these receptors 

in the actions of THC and CBD are likely to differ because of their 

differing affinity and efficacy (Lu & Mackie, 2021; Pertwee, 2008; 

Rahn & Hohmann, 2009). While THC has moderate- high affinity 

and efficacy at both CB1 and CB2 receptors, CBD has only modest 

affinity and efficacy for these receptors and is therefore likely to 

act via other mechanisms (McPartland et al., 2015). Thus, antagonist 

neuropathic pain studies have demonstrated that the anti- allodynic 

effects of THC are reduced by cannabinoid CB1 antagonists, 

while CB2 receptor antagonists have a lesser effect which differs 

between cold and mechanical allodynia (Casey et al., 2017, 2022; 

Mitchell et al., 2021). By contrast, cannabinoid CB2 receptor antag-

onists have a modest effect and CB1 receptors have no effect on 

F I G U R E  1  Schematic of identified 
targets of THC and CBD which have 

been associated with animal neuropathic 

pain models. Targets at which THC and 

CBD act as agonists, positive allosteric 

modulators or antagonists/inverse 

agonists are shown by blue, green and red 

arrows; while those which are unaffected 

by THC/CBD, or only with low potency 

have no or smaller arrows. Targets which 

have little to no effect in neuropathic 

pain models or have been disputed are 

depicted in grey.
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the anti- allodynic actions of CBD, suggesting the involvement of 

other targets (Casey et al., 2017; Jesus et al., 2019; Kumar Kalvala 

et al., 2022; Malvestio et al., 2021; Mitchell et al., 2021; Silva- 

Cardoso et al., 2021; Ward et al., 2011, 2014).

The common side effects produced by THC (e.g., sedation, motor 

incoordination and catalepsy) in animals that have undergone neuro-

pathic pain models are largely CB1- receptor- mediated, although CB2 

and GRP55 receptors have also been implicated (Casey et al., 2017; 

Mitchell et al., 2021; Wang et al., 2020). The absence of cannabis- 

like side effects with CBD in neuropathic pain models is consistent 

with the lack of involvement of cannabinoid CB1 receptors in its 

anti- allodynic profile (Casey et al., 2017; Mitchell et al., 2021; Wang 

et al., 2020). Thus, while both cannabinoid CB1 and CB2 receptors 

make important contributions to neuropathic pain relief, cannabis- 

based treatments that do not target CB1 receptors are likely to pro-

vide safer options (Figure 1).

4.6.2  |  Voltage- gated ion channels

Cannabinoids, including cannabis constituents and synthetic li-

gands, are known to inhibit voltage- gated sodium and calcium 

channels, VGCSs and VGCCs (Howlett, 2005; Pertwee, 2005). 

These cannabinoids non- selectively inhibit most VGCs subtypes, 
Nav1.1– 1.8 (Ghovanloo et al., 2018; Watkins, 2019). The recently 

described high- affinity cannabinoid inhibition of the Nav1.7– 1.8 

subtypes (Huang et al., 2023; Zhang & Bean, 2021) is of particular 

interest because of the role of these Nav subtypes in neuropathic 

pain and the current lack of selective drugs (Hameed, 2019; Xue 

et al., 2021).

Various cannabinoids have also been shown to inhibit voltage- 
gated calcium channels, including high- voltage activated N-  and 

P/Q- type channels (Cav2.1– 2) via CB1- mediated and more direct 

mechanisms (Harding et al., 2023; Mackie & Hille, 1992). Inter-
estingly, cannabinoids including THC and CBD inhibit the tran-

sient T- type channel subtypes (CaV3.1– 3) with varying potency 

and efficacy via a direct CB1- independent mechanism (Mirlohi 

et al., 2022; Ross et al., 2008). These T- type channels are particu-

larly interesting because of their expression in pain pathways, role 

in neuropathic pain and the lack of selective drugs (Cai et al., 2021; 

Choi et al., 2007; Dogrul et al., 2003; Jagodic et al., 2008; Na 

et al., 2008).

4.6.3  |  Ligand- gated ion channels

Cannabinoids act on a range of ligand- gated ion channels (Castillo- 

Arellano et al., 2023; Howlett, 2005). It is well known that can-

nabinoid ligands, including THC and CBD, activate a number of 

ion channels with the transient receptor potential (TRP) family, 

including the thermal nociception transducers TRPV1 and TRPV2 
(De Petrocellis et al., 2017). In this regard, both TRPV1 agonists 
and antagonists have been examined as analgesic targets for a 

range of chronic pain models (Wong & Gavva, 2009). The recent 

evidence that TRPV1 agonists ablate TPRV- containing nociceptor 
terminals is of particular interest given that it is associated with 

long- lasting analgesia (Arora et al., 2022). Cannabinoids such as 

THC and CBD are also known to act as positive allosteric modu-

lators (PAMs) of specific subtypes of glycine (GlyR) and GABA- A 

ligand- gated ion channels (Bakas et al., 2017; Xiong et al., 2012; 

Yevenes & Zeilhofer, 2011). In particular, THC and CBD produce 
GlyRα3- mediated analgesia at the spinal level in neuropathic pain 

models (Xiong et al., 2012).

4.6.4  |  Other GPCRs and receptors

Besides cannabinoid receptors, other GPCRs have been identified 

as cannabinoid targets in neuropathic pain states (Figure 1). An-

tagonist studies have demonstrated that 5- HT1A receptors have 

a major role in the anti- allodynic effects of acutely and chronically 

administered CBD in diabetic and paclitaxel models of neuropathic 

pain (Jesus et al., 2019; Ward et al., 2014). This is consistent with 

observations that CBD but not THC acts as an agonist at 5- HT1A 

receptors (Pertwee et al., 2018; Russo et al., 2005). Another GPCR 

of interest is GPR55, which has been shown to be modulated by not 

only THC, CBD and synthetic cannabinoid receptor agonists, but 

also by selective CB1/2 antagonists (Anavi- Goffer et al., 2012; Ry-

berg et al., 2007). However, these results are complicated by con-

flicting reports on the effect of GPR55 knockout on the induction 

and maintenance of nerve injury and chemotherapy drug models of 

neuropathic pain (Carey et al., 2017; Staton et al., 2008).

In addition to GPCRs, nuclear receptors which regulate gene 
expression, such as peroxisome proliferator- activated receptors 

(PPARs), have also been implicated in neuropathic pain (Okine 

et al., 2019; Starowicz & Finn, 2017). Thus, PPAR- γ has been iden-

tified as a target of cannabinoids, such as CBD and THC, and has 

been shown to mediate their anti- allodynic effects in neuropathic 

pain models (Hind et al., 2016; Jhaveri et al., 2008; O'Sullivan, 2007, 

2016; Silva et al., 2022).

4.6.5  |  Endocannabinoid degradation enzymes

It has long been proposed that drugs that block endocannabinoid 
degradation enzymes have the potential to produce more subtle 

effects on many conditions, including chronic pain, than globally 

acting receptor agonists (Maione et al., 2013). Interest in these 
drugs progressed following the development of highly selective 

ligands that block FAAH, MAGL or both enzymes, such as PF3845, 

JZL184 and JZL195, respectively (Ahn et al., 2009; Long, Li, 

et al., 2009; Long, Nomura, et al., 2009). By blocking their deg-

radation, these drugs specifically elevate the levels of endocan-

nabinoids where they are being released. Thus, both FAAH and 

MAGL inhibitors reduce allodynia in animal models of neuropathic 

pain and have a good therapeutic window (Adamson Barnes 
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et al., 2016; Ignatowska- Jankowska et al., 2014; Jayamanne 

et al., 2006; Kinsey et al., 2009, 2010, 2013; Russo et al., 2007). 

While it has been shown that CBD but not THC inhibits FAAH (De 

Petrocellis et al., 2011), its role in the effects of CBD in neuro-

pathic pain models has not been explored.

4.6.6  |  Targets of THC:CBD Combinations

The above evidence suggests that THC and CBD can act via mul-

tiple targets to produce pain relief in animal pre- clinical models of 

neuropathic pain. It might therefore be speculated that the targets 
of THC:CBD combinations are extremely diverse (Castillo- Arellano 

et al., 2023). Unfortunately, few studies have examined the targets 

that mediate the actions of THC:CBD combinations in neuropathic 

pain models. In a nerve- injury neuropathic pain model, the anti- 
allodynic effects of low- dose THC:CBD combinations are not medi-

ated by either cannabinoid CB1 or CB2 receptors, while the analgesia 

and side effects at high doses are largely CB1 receptor- mediated 

(Casey et al., 2017; Mitchell et al., 2021). In parallel with these anti- 
allodynic effects, low but not higher doses of the THC:CBD com-

bination were devoid of CB1 receptor- mediated side effects. Thus, 

unlike their individual actions, the targets at which THC:CBD combi-

nations produce their effect in most neuropathic pain models remain 

to be determined, particularly at low doses which lack cannabis- like 

side effects.

5  |  CONCLUSIONS

The current meta- analysis evidence for the clinical use of cannabis 

extracts in the treatment of chronic neuropathic pain is not encour-

aging and is difficult to reconcile with the large body of positive 

evidence from pre- clinical animal neuropathic pain models. When 

assessing clinical effectiveness, there is little data on comparisons 

between the different types of cannabis extracts (THC, CBD and 

nabiximols), dosing regimens (dose level and duration of treatment 

and route of administration) and targets. These factors are impor-

tant because there are emerging signals from the pre- clinical animal 

studies that provide a rational basis for the poor clinical effective-

ness observed for CBMs and potential clues as to how they might 

be refined.

Clinical evaluation has largely been restricted to THC- 

containing medicines, either cannabis, THC alone (or its synthetic 

derivatives) or nabiximols (THC:CBD combinations, such as Sa-

tivex). The clinical issue is that these THC- containing extracts do 

not provide a more effective treatment option for chronic neuro-

pathic pain than placebo and that they are generally associated 

with the typical cannabis- like side effects. This is reflected in the 

pre- clinical animal work where direct injection of THC reduces al-

lodynia in many neuropathic pain models with high effectiveness, 

but only at doses where substantial cannabinoid- like side effects 

are observed. Injected nabiximols only produce modest reductions 

in allodynia at low side effect- free doses but are indistinguishable 

from THC at higher doses. Furthermore, oral nabiximols display lit-

tle to no analgesic synergy and therefore have no advantage over 

THC. These issues arise because higher doses of THC- containing 

medicines (THC alone and THC:CBD combinations) produce pain 

relief and side effects via a common target, cannabinoid CB1 

receptors (Figure 1). These issues reflect many of the problems 

observed in clinical studies on THC- containing CBMs. Thus, it is 

essential to distinguish between different THC- containing for-

mulations, including their dosing and routes of administration, in 

terms of their activation of cannabinoid CB1 receptors.

On the contrary, CBD alone appears to provide a potentially 

safer alternative because it reduces the allodynia associated with 

many neuropathic pain models without the cannabis- like side ef-

fects associated with THC. Importantly, its effectiveness increases 
with chronic treatment. This greater safety is likely because of the 

lack of involvement of cannabinoid CB1 receptors. The current ani-

mal literature therefore highlights the potential importance of CBD 

as a therapeutic tool against neuropathic pain, particularly with 

long- term treatment, either alone or as an adjuvant to current drugs. 

However, CBD has lower effectiveness than THC- containing drugs. 

It also undergoes rapid and variable metabolism making it more dif-
ficult to assess, particularly with oral administration. To determine 

the optimal approach, pre- animal research on CBD is needed, par-

ticularly on its non- cannabinoid CB1 receptor- related mechanisms 

of action. This is crucial in determining the direction of future clinical 

research into these CBMs, particularly the potential of CBD as an 

alternative treatment option.
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