
REPRODUCTION

© 2016 Society for Reproduction and Fertility DOI: 10.1530/REP-16-0167

ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org

REVIEW

Endocannabinoid system and pregnancy

Fernando Correa, Manuel L Wolfson, Paula Valchi, Julieta Aisemberg and Ana María Franchi

Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine,  
University of Buenos Aires, Buenos Aires, Argentina

Correspondence should be addressed to A M Franchi; Email: anafranchi2000@gmail.com

Abstract

The endocannabinoid system (eCS), is a complex system, comprising the main endogenous ligands anandamide and 2-arachidonoyl 

glycerol, the cannabinoid receptors CB1 and CB2 and the biosynthetic and degrading enzymes. Cumulative evidence shows that the 

eCS plays an important role in reproduction, from egg fertilization to parturition. Therefore, alterations in this system, either by 

recreation/therapeutic use of cannabis or deregulation of the endogenous cannabinoids, might lead to adverse pregnancy outcomes, 

including retardation in embryo development, poor blastocyst implantation, inhibition of decidualization, miscarriage and 

compromised placentation. Nevertheless, the molecular mechanisms by which the eCS participates in different stages of pregnancy 

remain poorly understood. In this review, we will examine the evidence from animal and human studies to support the role of the 

eCS in implantation, early-to-late pregnancy and placentation as well as the difficulties of targeting this system for treatment of 

female infertility.
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The endocannabinoid system

Humans have been consuming cannabis since 
prehistory, not only for religious/spiritual or hedonic 
purposes but also for its purported medicinal effects. 
However, for a long time, research on active principles 
of cannabis remained elusive. It was not until the  
mid-1960s that Mechoulam and Gaoni (1965) isolated 
and characterized the main psychoactive component 
of Cannabis sativa, Δ9-tetrahydrocannabinol (THC). 
Due to its lipophilic nature, it was first believed that 
THC exerted its psychoactive effects by nonspecific 
mechanisms. However, in the late 1980s, Devane 
and coworkers (1988) identified a specific binding 
site for cannabinoids in the rat brain; a couple of 
years later, Matsuda and coworkers (1990) cloned 
the first cannabinoid receptor, which is now known 
as type 1 cannabinoid receptor (Cb1). Shortly after 
this discovery, a second cannabinoid receptor was 
identified by sequence homology and was named as 
type 2 cannabinoid receptor (Cb2) (Munro et al. 1993). 
Initially, it was presumed that CB1 was expressed 
mainly in the central nervous system (CNS) and CB2 in 
the periphery. However, today it is well established that 
both receptors are expressed in the CNS and peripheral 
tissues. CB1 and CB2 belong to the superfamily 
of 7-transmembrane G protein-coupled receptors 
(GPCRs). Activation of both receptors results in the 
inhibition of cyclic AMP (Matsuda et al. 1990, Slipetz 
et  al. 1995), activation of mitogen-activated protein 
kinase (MAPKs) signaling pathways (Bouaboula et  al. 

1995, 1999, Sánchez et  al. 1998, Wang et  al. 2003, 
Correa et al. 2005, 2009, Franklin & Carrasco 2013), 
regulation of Ca2+ channels and inwardly rectifying 
K+ currents (Caulfield & Brown 1992, Mackie & Hille 
1992, Gebremedhin et  al. 1999, Begg et  al. 2003, 
Wang et al. 2003) and activation of phospholipase C 
(Zoratti et  al. 2003). Cumulative evidence suggests 
the existence of a putative third type of cannabinoid 
receptor (‘CB3’), called GPR55 (Ryberg et  al. 2007, 
Sharir & Abood 2010). Interestingly, and adding 
complexity to the pharmacology of cannabinoids, it 
has been shown that these compounds might elicit 
response in other receptors, such as transient receptor 
potential vanilloid 1 (TRPV1), peroxisome proliferator-
activated receptors (PPARs) and GPR119 (Huang et al. 
2002, Sun et al. 2006, Syed et al. 2012).

The first endogenous ligand for cannabinoid 
receptors, arachidonylethanolamide (AEA), was isolated 
in 1992 by the efforts of Dr. Mechoulam’s lab, and it was 
named ‘anandamide’ (Devane et  al. 1992). Not long 
after that, a second endogenous ligand, 2-arachidonoyl 
glycerol (2-AG), was discovered (Mechoulam et  al. 
1995, Sugiura et  al. 1995). AEA and 2-AG are the 
best characterized and most studied endogenous 
cannabinoids or ‘endocannabinoids’. Nonetheless, 
many other endocannabinoids have been identified, 
such as O-arachidonoyl ethanolamine (virodhamine) 
(Porter 2002), 2-arachidonoyl glycerol ether (noladin 
ether) (Hanus et  al. 2001) and N-arachidonoyl-amino 
acids such as N-arachidonoyl-dopamine (NADA) 
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(Huang et al. 2002). However the physiological role of 
these and other naturally occurring endocannabinoids 
have not been extensively studied.

Endocannabinoids are not stored in vesicles 
but synthesized de novo upon demand via the 
hydrolysis of cell membrane lipid precursors (Fig.  1). 
The canonical biosynthetic pathway for AEA is the 
sequential action of N-acyltransferase (NAT) and 
N-acylphosphatidylethanolamine-specific phospholi-
pase D (NAPE-PLD) (Di Marzo et al. 1994, Sugiura et al. 
1996). For 2-AG, the main biosynthetic pathway involves 
the hydrolysis of phosphatidylinositol by phospholipase 
C (PLC), producing 1,2-diacylglycerol (DAG), which is 
then converted into 2-AG by a diacylglycerol lipase α/β 
(DAGL) (Prescott & Majerus 1983, Sugiura et al. 1995).

Once released, the endocannabinoids bind 
to CB1 and/or CB2 receptor to elicit their effect. 
Endocannabinoid-mediated signaling is terminated 
by their fast catabolism, mainly through the action 
of hydrolytic enzymes. AEA is rapidly degraded 
by the fatty acid amide hydrolase (FAAH) (Cravatt 
et  al. 1996), whereas 2-AG is inactivated by the 
monoacylglycerol lipase (MAGL) (Dinh et  al. 
2002). However, alternative pathways have been 
described. Thus, AEA and 2-AG can be oxidized by 
the cyclooxygenase-2 (COX-2), distinct lipoxygenases 
(LOXs) or cytochrome P450 (CYP) into metabolic 
products, which produce biological effects by 
cannabinoid receptor-independent mechanisms (Yu 
et al. 1997, Burstein et al. 2000, Kozak et al. 2002, 
Urquhart et al. 2015). Again, there is a paucity of data 
on the pathophysiological role of these metabolic 
products and their mechanisms of action.

The endocannabinoid system in reproductive tissues

Clinical observations have reported that heavy 
cannabis users present altered parameters associated 
with a diminished fertility capacity and reproductive 
failure, such as decreased plasma testosterone levels, 
reduced sperm count, alterations in sperm motility and 
capacitation, embryotoxicity and fetal abnormalities 
as well as early pregnancy termination (reviewed by 
Wang et al. 2006a). Moreover, a reduced success rate 
of in vitro fertilization is reported in cannabis consumers 
(Klonoff-Cohen et  al. 2006). These observations 
prompted researchers to investigate the presence and 
function of components of the eCS in both male and 
female reproductive tissues. Thus, it has been shown that 
N-acylethanolamines are present in rodent and human 
reproductive fluids (Schuel et  al. 2002) and that the 
endometrium expresses higher levels of AEA than any 
other reproductive tissues (Das et  al. 1995). Different 
lines of research have demonstrated the presence of the 
entire active eCS (NAPE-PLD, CB1, CB2 and FAAH) in 
rodent and in human ovarian tissue (El-Talatini et  al. 
2009a), oviduct (Wang et al. 2006b), uterus (Das et al. 
1995, Paria et al. 2001, Scotchie et al. 2015) and testis 
(Cobellis et  al. 2006, Battista et  al. 2008). In male 
reproductive tissues, CB1 is expressed in germ cells, from 
spermatogonia to spermatozoa (Rossato et al. 2005), and 
Leydig cells (Gye et al. 2005), while CB2 is expressed 
in Sertoli cells (Maccarrone et  al. 2003a). In female 
reproductive tissues, CB1 and CB2 receptors have been 
detected in oocytes at all stages of maturation, whereas 
NAPE-PLD and FAAH expressions are high in growing 
secondary and tertiary follicles and corpora lutea and 
albicantia (El-Talatini et  al. 2009b). Furthermore, AEA 
levels in human follicular fluid correlates with oocyte 
maturation (El-Talatini et al. 2009a).

It is well established that plasma AEA levels fluctuate 
with the natural menstrual cycle, with the highest 
levels during the follicular phase (Lazzarin et al. 2004, 
El-Talatini et  al. 2010). Interestingly, the expression 
and distribution of FAAH, NAPE-PLD, CB1 and CB2 
in female reproductive tissues also vary with the 
menstrual cycle (reviewed in Di Blasio et  al. 2013), 
suggesting that the eCS expression is under hormonal 
control. Indeed, progesterone and estrogen are shown 
to regulate the AEA levels by modulating the uterine 
expression of FAAH (Maccarrone et  al. 2000a). 
Conversely, gonadotrophin secretion is regulated 
by endocannabinoids via activating CB1 receptors 
localized at the preoptic area of the hypothalamus 
(Park et al. 2004). At this level, cannabinoids negatively 
regulate the activity of gonadotrophin-releasing 
hormone (GnRH)-secreting neurons (Gammon et  al. 
2005). However, CB1 receptors are also present at 
the pituitary level, suggesting a localized effect of 
cannabinoids on luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) (Wenger et  al. 1995). 

Figure 1 Schematic representation of components of the 
endocannabinoid system with the postulated pathways of 
biosynthesis and degradation of anandamide (AEA) and 
2-arachidonylglycerol (2-AG), as well as their site of action.  
AA, arachidonic acid; CB1, cannabinoid receptor type 1;  
CB2, cannabinoid receptor type 2; COX-2, cyclooxygenase type 2; 
DAG, diacylglycerol; DAGL, diacylglycerol lipase; FAAH, fatty acid 
amide hydrolase; MAGL, monoacylglycerol lipase; NAPE-PLD, 
N-acylphosphatidylethanolamine-specific phospholipase D;  
PLC, phospholipase C.
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A cannabinoid-induced downregulation of GnRH, LH 
and/or FSH secretion might explain the reduced plasma 
testosterone levels and decreased sperm count found 
in heavy marijuana consumers (Whan et al. 2006).

Despite the amount of data available, the precise 
role of the eCS in male and female fertility remains 
poorly understood and conflicting data have been 
reported, suggesting the need for further research of the 
physiological role of the eCS in reproductive organs 
(reviewed by Karasu et al. 2011). Here, we will focus 
on the physiological and pathological roles of the eCS 
throughout pregnancy.

The endocannabinoid system during implantation

Implantation is the very early stage of pregnancy at 
which the blastocyst adheres and invades the wall of 
the uterus. The process of implantation implies a highly 
synchronized and complex bidirectional communication 
between the conceptus and the luminal endometrial 
cells, and it could be divided in three stages: apposition, 
adhesion and penetration. On contact with the blastocyst, 
the underlying area of contact in the stroma becomes 
increasingly vascularized and edematized. This process 
is called ‘primary decidualization reaction’.

The endocannabinoid system plays an important role 
during the process of implantation. Studies in mice have 
shown that a delicate balance between anandamide 
(AEA) synthesis (driven mainly by NAPE-PLD) and 
degradation (mainly by FAAH) is necessary to ensure 
an appropriate ‘AEA tone’ during implantation (Paria 
et al. 1996, Guo et al. 2005). Indeed, it has been shown 
that too high and too low levels of AEA are deleterious 
for pregnancy (Sun & Dey 2009). Accordingly, in vitro 
experiments have demonstrated that high levels of 
AEA inhibit the development of 2-cell embryos into 
blastocysts and the lysis of the zona pellucida (a process 
known as ‘zona hatching’) as well as the trophoblast 
differentiation (Schmid et al. 1997, Wang et al. 2006b). 
Conversely, in vitro low levels of AEA accelerate the 
trophoblast differentiation and outgrowth. Interestingly, 
CB2 is present as early as 1-cell stage through blastocyst 
stage, whereas Cb1 mRNA is only detected from 4-cell 
stage onward (Paria et al. 1995).

On the maternal side, AEA and 2-AG are produced 
by the murine uterus, and their levels are tightly 
regulated by the NAPE-PLD/FAAH and DALGα/MAGL 
ratios respectively (Guo et al. 2005, Wang et al. 2007, 
Fonseca et  al. 2010a). Thus, DALGα and MAGL are 
distributed during the implantation process in a way 
that minimizes the excessive exposure to high levels 
of 2-AG (Wang et  al. 2007, Fonseca et  al. 2010b). 
Nevertheless, the role of 2-AG during different stages of 
pregnancy is not completely understood. On the other 
hand, Guo and coworkers (2005) have shown that on 
days 1–4 of pregnancy in mice, NAPE-PLD is highly 
expressed in the luminal and glandular epithelium of 

the uterus compared with the stroma, suggesting that 
the epithelium is the major source of endocannabinoids 
before implantation. Nevertheless, on days 5–7 of 
pregnancy, NAPE-PLD is expressed only by luminal and 
glandular epithelial cells in the interimplantation sites 
together with a very low expression of this enzyme in 
the sites of blastocyst implantation. The opposite is true 
for uterine FAAH expression; its levels are higher at 
implantation sites and lower at interimplantations sites 
(Wang et al. 2007). As a result, higher levels of AEA are 
present in the interimplantation than at implantation 
sites (Paria et  al. 2001, Guo et  al. 2005) (Fig.  2). It 
has been hypothesized that the embryo plays a role 
in regulating the uterine endocannabinoid tone by 
releasing, a yet to be characterized, ‘FAAH activator’ 
that decreases the uterine NAPE-PLD/FAAH ratio, 
reducing AEA levels at the implantation site (Maccarrone 
et  al. 2004). Accordingly, it has been shown that 
lysophosphatidic acid induces the expression of FAAH 
during the implantation window (day 5 of gestation) 
in rats (Sordelli et al. 2012a) and that the presence of 
the embryo is required for AEA action on uterine nitric 
oxide synthase activity (Sordelli et al. 2011). Moreover, 
to minimize the exposure to toxic levels of AEA, the 
blastocyst approaching implantation regulates its 
expression of CB1. Thus, it has been shown that 
blastocysts collected from the uterus on the morning 
of day 4 of pregnancy expressed higher levels of AEA 

Figure 2 Schematic representation of the feto–maternal interface and 
the role of the endocannabinoid signaling during implantation 
according to rodent and human studies (adapted and modified from 
Fonseca et al. 2013a). The process of implantation requires a highly 
synchronized and complex bidirectional communication between 
the conceptus and the endometrium. The endocannabinoid system 
(eCS) plays an important role during the process of implantation.  
A delicate balance between anandamide (AEA) synthesis (driven 
mainly by NAPE-PLD) and degradation (mainly by FAAH) is 
necessary to ensure an appropriate ‘AEA tone’ during implantation. 
The implantation site presents low levels of AEA by highly expressing 
FAAH together with a low expression of NAPE-PLD. In contrast, the 
adjacent tissue presents high levels of AEA by expressing high levels 
of NAPE-PLD and low levels of FAAH.
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binding sites compared with blastocysts recovered on 
the evening of day 4, before the attachment reaction 
(Paria et al. 2001). It has been reported that activated 
blastocysts show higher expression of CB1 than dormant 
blastocysts (Wang & Dey 2005). Thus, AEA levels are 
tightly regulated in human pregnancy, showing no 
variations during the first and second trimesters (Lam 
et al. 2008). Conversely, elevated serum levels of AEA 
are found in women with nonviable first-trimester 
pregnancy compared with those in women with viable 
pregnancies (Taylor et  al. 2011). Similarly, Habayeb 
and coworkers (2008a,b) found higher plasma levels 
of AEA in women prone to miscarriage compared with 
those in the normal birth group. Contrariwise, Tong 
and coworkers (2012) found no differences between 
the plasma levels of AEA of asymptomatic women at 
6–10 weeks of gestation who miscarried and those 
who did not. Nevertheless, Maccarrone and coworkers 
(2003a,b) have shown that high levels of AEA are 
correlated with low levels of progesterone, which is 
associated with implantation failure and/or abnormal 
development of the feto–maternal interface that 
eventually leads to miscarriage. Indeed, progesterone 
has been shown to stimulate FAAH activity in human 
peripheral lymphocytes (Maccarrone et  al. 2001a), 
with these cells playing a crucial role during human 
embryo implantation. Lipopolysaccharide (LPS), the 
main component of Gram-negative bacteria frequently 
associated with maternal infection and pregnancy 
loss, not only reduces FAAH activity and increases the 
production of AEA in human lymphocytes (Maccarrone 
et al. 2001b) and murine macrophages (Liu et al. 2003), 
but also causes a serum progesterone withdrawal 
in 7-day pregnant mice (Aisemberg et  al. 2013) – 
changes that were associated with miscarriage. Data 
from our laboratory have shown that progesterone 
supplementation to LPS-treated pregnant mice restores 
FAAH activity in murine peripheral mononuclear 
cells (Wolfson et  al. 2013). Accordingly, Maccarrone 
and coworkers (2000b) reported that FAAH activity in 
human peripheral lymphocytes was lower in women 
who had spontaneous miscarriages than in those 
who did not. In fact, increased AEA levels are also 
found in the peripheral blood of women with ectopic 
pregnancy together with a reduced FAAH activity in 
peripheral lymphocytes (Gebeh et al. 2013). Similarly, 
women subjected to in vitro fertilization (IVF) or 
intracytoplasmatic sperm injection (ICSI) and become 
pregnant show low levels of serum AEA at the time 
of implantation in comparison with those who did 
not (El-Talatini et  al. 2009a). Furthermore, Faah−/− 
mice, which have higher oviductal AEA levels also 
show impaired embryo transport through the oviduct  
(Wang et al. 2006b). This seems to be due to maternal 
and not embryonic defects because the embryo can 
implant in day 4 pseudopregnant uteri (Wang et  al. 
2004, Sun & Dey 2008). Interestingly, Faah−/− embryo 

exhibits retarded development (Wang et al. 2006b, Xie 
et al. 2012).

Regarding the expression of cannabinoid receptor 
during the implantation stage, it is shown that both 
CB1 and CB2 are expressed in nonpregnant human 
endometrium (Taylor et  al. 2010) as well as in rat 
endometrium during early pregnancy (Fonseca et  al. 
2009). A reduced expression of CB1 in fallopian tubes is 
associated with ectopic pregnancy (Horne et al. 2008). 
It has been proposed that CB1 plays an important role in 
embryo transport because Cb1−/− and Cb1−/−Cb2−/− but 
not Cb2−/− mice show oviductal retention (Wang et al. 
2004), suggesting that the lack of CB1 is responsible 
for this phenomenon. Moreover, wild-type mice 
pharmacologically treated with CB1 antagonist, but 
not CB2 antagonists, also show high rates of embryo 
retention in the oviduct.

The endocannabinoid system during early pregnancy

Once the blastocyst comes in contact with the 
endometrial layer of the uterus, the endometrial stromal 
cells undergo a series of morphological changes (known 
as decidualization), which prepare the uterus for 
trophoblast invasion.

In humans, decidualization happens in the normal 
menstrual cycle during the luteal phase (Salamonsen 
et  al. 2003). Interestingly, during the luteal phase, 
the levels of plasma AEA are lower than those in the 
follicular phase (Habayeb et al. 2004), which suggest 
that steroid hormones are involved in the regulation of 
AEA levels in human pregnancy. However, in rodents, 
decidualization only occurs when the blastocyst is in 
close contact with the endometrium (Fonseca et  al. 
2012), with stromal cells proliferating and differentiating 
into decidual cells. Abnormalities during the process of 
decidualization are associated with increased risk of 
pregnancy complications, miscarriage, preeclampsia, 
fetal growth restriction and preterm labor (Fonseca 
et al. 2013a).

Several studies have provided evidence of the 
expression of CB1, CB2, NAPE-PLD and FAAH in 
decidua of women with viable pregnancies (Habayeb 
et al. 2004) as well as in rodents (Fonseca et al. 2009, 
2010a, Taylor et  al. 2011) suggesting the role of the 
endocannabinoid system in the process of decidual 
differentiation and remodeling. Fonseca et  al. (2009) 
have shown that CB1 expression is markedly upregulated 
during midpregnancy in rats, a period of maximal 
decidual development. After reaching its maximum 
development, the decidua undergoes regression with 
apoptosis playing a crucial role (Gu et  al. 1994, Dai 
et al. 2000). Pharmacological activation of CB1 receptor 
with the synthetic cannabinoid WIN 55,212-2 inhibits 
the induction of human decidual cell differentiation and 
induces apoptosis by a cAMP-dependent mechanism 
(Moghadam et  al. 2005). Thus, AEA and 2-AG were 
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described as proapoptotic lipids in primary rat decidual 
cell cultures (Fonseca et  al. 2009, 2010b). Therefore, 
an ‘endocannabinoid tone’ needs to be tightly 
maintained to avoid the toxic effects on the changing 
decidua. Low levels of AEA induce morphological and 
molecular changes characteristic of an apoptotic cell 
death, whereas higher concentrations are associated 
with an increased release of lactate dehydrogenase, 
characteristic of a necrotic process (Fonseca et al. 2009). 
Interestingly, these effects were reversed by blocking 
CB1, but not CB2 or TRPV1. Activation of CB1 results 
in de novo synthesis of ceramide and signaling via p38 
MAPK phosphorylation, which leads to mitochondrial 
stress and ROS production and subsequently, apoptosis 
(Fonseca et  al. 2013b). The fact that increased levels 
of AEA exert toxic effects on decidua via activation of 
CB1 receptor is corroborated by our observation that 
Cb1−/− mice are resistant to LPS-induced early embryo 
loss and presented a greater number of pups per litter 
(Wolfson et al. 2015). Conversely, Horne and coworkers 
(2008) have found that women with ectopic pregnancy 
show low decidual expression of CB1, and Wang and 
coworkers (2004) reported impaired oviductal transport 
in Cb1−/− mice. Therefore, a lack of expression of CB1 
might be beneficial in protecting the pregnancy from 
inflammation but might predispose to other pathologies. 
The role of CB2 on decidual cells is, however, much 
less clear. It has been reported that high concentrations 
of AEA induces, via a CB2-dependent mechanism, 
inhibition of proliferation of the human choriocarcinoma 
cell line BeWo, a model of first-trimester trophoblast 
(Trabucco et al. 2009). We have shown that high levels 
of AEA stimulate nitric oxide (NO) synthesis on murine 
decidua in response to LPS and that these effects were 
abrogated by blocking either CB1 or CB2 (Vercelli et al. 
2009). Moreover, AEA and its nonhydrolyzable analog, 
methanandamide, modulate the LPS-induced synthesis 
of prostaglandins in uterine explants from pregnant mice 
(Vercelli et  al. 2012). Furthermore, LPS administration 
to 7-day pregnant mice induces a decrease in decidual 
FAAH activity (Wolfson et al. 2015). Our observations 
point toward the endocannabinoid system as a mediator 
of the deleterious effects of LPS in reproductive events.

As it has been previously mentioned, FAAH is the 
main catabolic enzyme for the degradation of AEA into 
arachidonic acid and ethanolamine, providing a source 
for prostaglandin synthesis. As decidual FAAH might 
be downregulated during maternal infections (Wolfson 
et al. 2015), AEA could be a direct substrate to COX-2 
oxidative metabolism to produce prostaglandin-like 
compounds called prostaglandin-ethanolamides or 
‘prostamides’ (PMs). Indeed, Almada and coworkers 
(2015) have recently shown that AEA is metabolized 
into prostamide-E2 (PME2) in rat decidual cells when 
FAAH is inhibited. PME2 mimics the proapoptotic 
actions of AEA on decidual cells (Almada et al. 2015). 
Prostamides are up to 3-fold higher in AEA-treated 

tissues from Faah−/−-mice compared with their wild-type 
counterparts (Weber et al. 2004). These findings provide 
evidence that low FAAH activity resulting in increased 
prostamide concentrations might have a deleterious 
impact on pregnancy.

Interestingly, the interaction between AEA and 
COX-2 seems to be far more complex because several 
reports indicate that AEA is capable of modulating 
prostaglandin production. Thus, in the amnion, AEA acts 
via CB1 to increase PGE2 levels (Mitchell et al. 2008), 
whereas it exerts opposite effects on uterine PGE2 and 
PGF2α biosynthesis, by inhibiting PGE2 production and 
increasing PGF2α levels (Vercelli et al. 2012). Similarly, 
COX-2-derived prostaglandins mediate the inhibitory 
effect of AEA on NOS activity in the receptive rat uterus 
(Sordelli et  al. 2012b). The endocannabinoid system 
appears to be at the center of an intricate biochemical 
cross talk that further complicates the understanding of 
its role in the physiology and pathology of pregnancy.

Alterations in endocannabinoid signaling are 
associated with early pregnancy loss, although 
disparate results have been reported. No differences 
were found in the expression of NAPE-PLD in the 
trophoblast, mesenchymal core or placental decidua 
from spontaneous miscarriages compared with 
placentae from elective surgical termination (Taylor 
et al. 2011). Contrarily, Trabucco and coworkers (2009) 
have found a 2-fold increase in Nape-pld mRNA 
expression in the first trimester (weeks 9–12) placentae 
from elective abortions than in that from spontaneous 
miscarriage. This observation would suggest that before 
a miscarriage, there are low levels of AEA in placenta, 
which is in stark contrast to the reports that women at 
high risk of miscarriage present high plasma levels of 
AEA (Habayeb et al. 2004, 2008a, Taylor et al. 2011). 
On the other hand, Tong and coworkers (2012) have 
failed to find differences in plasma AEA levels between 
women with normal pregnancy and women who 
subsequently miscarried. Conversely, it has been found 
that FAAH is more abundant in the decidual stromal 
cells of women with recurrent miscarriage than in the 
placenta from normal pregnancies (Chamley et  al. 
2008). No differences, however, have been found in 
FAAH expression on trophoblast cells from women with 
normal pregnancy and recurrent miscarriage (Chamley 
et al. 2008). Collectively, these observations suggest that 
the expression of the endocannabinoid system is time 
and tissue specific and that alterations in this system are 
associated with early pregnancy loss.

Endocannabinoid system during placentation

Once the peak phase of decidualization ends, 
placentation begins to establish maternal–fetal 
circulation. The placenta requires a proper number and 
distribution of the different trophoblastic cells to perform 
its physiological functions. Changes in trophoblast 
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proliferation, differentiation and/or distribution lead to 
an abnormal placentation. 

The major endocannabinoids AEA and 2-AG 
are detected in murine placentae. Indeed, Faah−/− 
mice, but not Cb1−/− mice, show high levels of 
placental AEA, supporting the hypothesis that FAAH 
is the major metabolic gatekeeper of AEA levels. 
Immunohistochemical analysis has shown that FAAH 
and CB1 are expressed on ectoplacental cone (EPC) on 
day 10 of pregnancy and the spongiotrophoblast cells 
(SPT) layer on day 14 (Sun et al. 2010). Moreover, CB1 
and FAAH are shown to be expressed in human amniotic 
epithelial cells, chorionic cytotrophoblasts (Park et  al. 
2003) and syncytiotrophoblasts (Habayeb et al. 2008b). 
AEA metabolic enzymes are also expressed during 
human placental development (Chamley et  al. 2008, 
Taylor et al. 2011), and the whole eCS is shown to be 
present in murine placentae (Sun et al. 2010). Different 
lines of research have provided evidence that altered 
expression of NAPE-PLD, CB1 and FAAH in the first-
trimester placentae and high levels of AEA are associated 
with an endangered pregnancy outcome (Park et  al. 
2003, Trabucco et  al. 2009, Meccariello et  al. 2014). 
Altered levels of AEA influence trophoblast invasion 
(Sun et  al. 2010) and proliferation (Xie et  al. 2012). 
Furthermore, higher plasma levels of AEA are detected in 
women with nonviable pregnancies (Taylor et al. 2011). 
However, in rats, at the peak of decidua development, 
high NAPE-PLD activity increases AEA levels, which are 
involved in decidua remodeling (Fonseca et al. 2013a,b, 
2014). Notwithstanding, FAAH activity prevails during 
placentation (Fonseca et al. 2014), giving further support 
to the hypothesis that this enzyme is the key regulator of 
AEA levels (Fig. 3).

Placentation is shown to be compromised in Cb1−/− 
mice. These animals show lower placental weight on 
days 12 and 14 than WT mice (Sun et  al. 2010) and 

show a retarded development of the SPT layer. Abnormal 
endocannabinoid signaling affects the proliferation 
of trophoblast progenitor cells in the EPC, which later 
differentiate into SPT cells (Sun & Dey 2012). Cb1−/− 
trophoblast progenitor cell proliferation is much reduced, 
whereas Faah−/− trophoblast progenitor cell proliferation 
is only mildly reduced (Sun & Dey 2012). Accordingly, 
trophoblast stem cells (TSCs) from WT mice treated with 
methanandamide show a faster proliferation rate, which 
is attenuated by the selective antagonism of CB1 (Sun 
et  al. 2010). In contrast, other reports show that AEA 
not only prevents BeWo trophoblast cell proliferation 
in a dose-dependent manner (Habayeb et  al. 2008b) 
but also induces apoptosis (Costa et al. 2015). Similar 
to AEA, Costa and coworkers (2014) have described 
the expression of 2-AG metabolic enzymes in human 
cytotrophoblasts and in BeWo cells. Furthermore, 2-AG 
has been shown to induce apoptosis in these cells via a 
CB2 receptor-dependent mechanism (Costa et al. 2014).

Interestingly, Cb1−/− and Faah−/− placentae show an 
abnormal differentiation of trophoblast precursor cells, 
which are more prone to differentiate into trophoblast 
giant cells (TGCs) in detriment of the spongiotrophoblast 
cells (Sun et  al. 2010). Reciprocal embryo transfer 
experiments between Cb1−/− and WT mice have shown 
that there is a lack of CB1 in the embryo that provokes 
this biased trophoblast differentiation (Sun et al. 2010). 
Pharmacological blockade of CB1 receptor on days 8 
and 9 of pregnancy, when placentation begins, further 
confirms the previous observation. Indeed, treatment 
with SR14716A (a CB1 antagonist) reduces the number 
of SPT cells in WT placentae. Furthermore, invasive 
capacity of the trophoblast cells of the maternal 
decidual zone to reshape and redirect the maternal 
blood vessels to support embryo growth is critical for 
a successful pregnancy (Cross et al. 2002). It has been 
shown that the invasion of glycogen trophoblast cells 

Figure 3 Schematic representation of the feto–maternal interface and the role of the endocannabinoid signaling during trophoblast proliferation 
and invasion according to studies in FAAH-deficient mice (adapted and modified from Fonseca et al. 2013a). Trophoblast proliferation and 
invasion are compromised in Faah−/− mice suggesting an important role of the endocannabinoid system in these processes. Placentae from 
FAAH−/− mice show an abnormal differentiation of trophoblast precursor cells, which are more prone to differentiate into trophoblast giant cells 
(TGCs) in detriment of the spongiotrophoblast cells (SPT). This biased trophoblast differentiation compromises the invasive capacity of these 
cells to reshape and redirect the maternal blood vessels to support embryo growth, representing a risk for the pregnancy outcome.
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(GTC) into the decidua basalis is highly reduced in 
Cb1−/− mice compared with WT mice (Sun et al. 2010). 
These observations further support the hypothesis that 
an appropriate endocannabinoid signaling is required 
for the correct placental development and excessively 
high levels of endocannabinoids are toxic to trophoblast 
cells, therefore represents a risk factor for the first-
trimester miscarriages (Habayeb et al. 2008b).

Final remarks

With the increasing number of countries decriminalizing, 
and even legalizing, the recreational use of cannabis, 
there is a critical need for understanding the effects 
of this drug in female fertility and the involvement of 
the eCS in the pathophysiology of the different stages 
of pregnancy. This is particularly important in the case 
of women seeking pregnancy who consume cannabis 
for medical reasons (such as treatment of nausea and 
vomiting, reduction of symptoms associated with some 
neurological diseases, reduction of intraocular pressure 
in glaucoma and treatment of depression and pain). The 
evidence presented here shows that alterations in the 
eCS lead to poor pregnancy outcomes: poor blastocyst 
implantation, inhibition of decidualization, retardation 
in embryo development, miscarriage and compromised 
placentation. Although targeting the endocannabinoid 
system represents an attractive pharmacological 
strategy to maintain a healthy pregnancy, the intrinsic 
promiscuity of this system makes it difficult for the 
development of therapeutic drugs and/or to predict their 
effects. Overall, the expression/activity of the several 
components of the endocannabinoid system (NAPE-
PLD, CB1, CB2 and FAAH) must be tightly regulated 
to keep it at physiological levels at every stage of 
pregnancy, from implantation to parturition, to prevent 
the negative effects during this period and to assure a 
healthy pregnancy. As onset of labor approaches, AEA 
levels increase dramatically. In any case, the enzyme 
FAAH seems to be the ‘metabolic checkpoint’ of 
endocannabinoid activity. Future research efforts should 
be directed to understand the complex interaction of 
this system.
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