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The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensi-

vely studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective

effects and regulating glial responses. This review centres around this less-studied area, focusing on the

cellular andmolecular mechanisms underlying the protective effect of the cannabinoid system in brain

ageing. The progression of ageing is largely determined by the balance between detrimental, pro-

ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental

evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators

ofmitochondrial activity, as anti-oxidants and asmodulators of clearance processes protect neurons on

the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-

derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the pro-

gression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed

by cannabinoids, suggesting that they may also influence the ageing process on the system level. In

good agreement with the hypothesized beneficial role of cannabinoid system activity against brain

ageing, it was shown that animals lackingCB1 receptors showearly onset of learning deficits associated

with age-related histological and molecular changes. In preclinical models of neurodegenerative dis-

orders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as

therapeutic tools is either inconclusive or still missing.
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1. FUNCTIONAL, HISTOLOGICAL AND

MOLECULAR CHANGES IN THE AGEING BRAIN

Ageing is associated with a decline of motor coordina-

tion [1], sensory abilities [2], attention and cognitive

performance [3], which together are responsible for

the increasing deficits in learning and memory tasks.

However, as with all age-related health issues, there is

a wide spectrum of potential outcomes: While many

senior citizens still enjoy their cognitive abilities at an

advanced age, others, especially those who suffer from

neurodegenerative disorders such as Alzheimer’s dis-

ease (AD), may show signs of cognitive impairment

early in their life. Thus, a better understanding of the

molecular and cellular processes that contribute to, or

protect against, cognitive decline, may offer novel

routes for therapy and prevention.

The mitotic activity within the central nervous

system is low and the newly generated cells are

mostly glia cells. Neurogenesis is restricted to the sub-

ventricular zone and to the subgranular zone of the

hippocampus in mammals. Only a small percentage

of the new neurons integrate to the existing neuronal

networks, the majority undergo apoptosis and die.

Although the brain is mostly a post-mitotic organ,

the onset and progression of age-related changes is

independent from the chronological age of the neurons

but correlates with the lifespan of the species: neurons

from 3-year-old mice show signs of accelerated senes-

cence, whereas neurons from the brain of a 3-year-old

dog are free from these changes. At present, the reason

for this huge interspecies difference, despite identical

mechanisms influencing the process of brain ageing,

is not fully understood.

The onset and progression of age-related decline in

brain functions also differs strongly between the cogni-

tive domains in humans [3] and in animals from

primates [4] and rodents [5] to zebrafish [6]. The

reason for this large variance is partly the differences

in the ability to recruit additional brain areas for task

solving, which can partially counterbalance the effect

of functional decline [7]. Another factor, which may

contribute to the differences in the effect of ageing

on cognitive functions, is the large variance in the sen-

sitivity to age-related changes between brain areas and

neuronal types [8,9]. Nevertheless, it is generally

assumed that age-related progression in synaptic dys-

function and neuronal plasticity impairment are the

direct causes of the alterations in neuronal connectivity

[10] and thus functional deficits in ageing [11].

Probably the most consistent change during healthy

ageing in the brain structure in humans is the shrink-

age in brain volume and the expansion of the

ventricular system. The frontal and parietal cortex
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together with the putamen, thalamus and accumbens

are the most affected areas, whereas the volume of

the brain stem remains largely unchanged in ageing

[12]. Atrophic changes in white matter [13] play a

major role in the reduction of brain volume. The

white matter, of which the integrity is crucial for the

communication between brain areas, contains mostly

large myelinated axons. Probably both degeneration

and loss of nerve fibres, and deterioration of myelin

sheets with age, contribute to the reduction of white

matter volume [14,15]. Although it is tempting to

speculate that the degeneration of white matter con-

tributes to the development of age-related cognitive

deficits, the correlation between these structural and

functional changes is weak [16]. In normal healthy

ageing, the global number of microglia [17] or neurons

[18] does not decrease significantly. However, a signifi-

cant decline in neuronal number was detected in

several brain regions such as the subiculum and hilus

regions of the hippocampus [19] and in the entorhinal

cortex [20]. These changes correlate well with the

severity of declarative memory decline [21]. Although

the intensity of adult neurogenesis strongly decreases

in ageing, it is improbable that this effect contributes

to the reduction of neuronal numbers in the hippo-

campus [22]. However, because the newly generated

neurons participate in pattern separation involving the

generation of new neuronal networks [23], this effect

can contribute to age-related cognitive deficits. The

extent and branching of dendrites is largely preserved

during ageing [24] (but see also [25]) with a region-

specific pattern [26,27], which suggests that during

healthy ageing it is probably functional rather than

structural alterations that are responsible for the

progression of cognitive ageing.

Although detailed stereological analyses of the ageing

brain revealed that the histological structure of the brain

is largely preserved, the expression and composition

of neurotransmitter receptors, the amount of trophic

factor and their receptors characteristically changes in

normal ageing and in neurodegenerative disorders

[28]. Not surprising therefore that the intracellular

signalling systems where the receptor signals converge

also undergo characteristic changes during ageing in

both neurons and glial cells. Substantial evidence from

a variety of species indicates that cAMP response

element-binding protein (CREB) is a molecular switch

that converts alterations in receptor activity into tran-

scriptional changes leading to long-lasting adaptation

[29]. A crucial role of CREB signalling in memory for-

mation was found in both invertebrates and vertebrates

[30]. Generally, decreased CREB activity was associated

with learning impairments in healthy aged animals

[31,32] and with cognitive deficits in animal models of

neurodegenerative disorders [33–35]. Importantly, the

level of phosphorylated CREB and the activity-induced

increase in CREB phosphorylation is diminished in

ageing [36,37], and this itself may influence the ageing

process [38,39]. Altered calcium signalling in ageing

neurons significantly contributes to diminished CREB

activity. It is suggested that the calcium homeostasis is

disturbed in ageing, because the amplitude of the cal-

cium-dependent after-hyperpolarising potential is

increased in aged neurons [40], which makes them less

excitable. The reason for this phenomenon is that the

expression of L-type calcium channels increases with

age [41], whereas the expression of proteins involved in

the termination of calcium signal such as calcium extru-

sion ATPases [42,43] and calcium-binding proteins [44]

is diminished in old neurons. These changes may lead to

an enhanced calcium signal after activation and elevated

activity of calcium-dependent signalling pathways. Age-

dependent alterations in the intracellular signalling

system have a huge impact on the transcriptional activity

of the cells [30,38,45].

Change in the expression profile during ageing in

the brain is a characteristic phenomenon [46] observed

from humans [47] and mice [48] to Drosophila [49].

The differences in expression patterns are more promi-

nent between age groups than between sexes,

ethnicities or individuals in humans [50]. Generally,

among the most affected genes are members of the cal-

cium signalling and the CREB pathway [24], genes

playing central roles in synaptic plasticity, stress

responses and inflammation [47,51]. The measure of

age-dependent changes in gene expression correlated

with memory performance [52,53] and could be par-

tially reversed by techniques known to positively

influence the process of brain ageing [51,54,55]. It

should nevertheless be noted that the detected changes

in gene expression could be responsible for the neur-

onal deficits but they could also be adaptive, helping

to maintain the structural integrity of neuronal

networks in the ageing environment [56]. In neuro-

degenerative disorders, an acceleration of expression

changes is observed in genes involved in inflammatory

and apoptotic processes; thus, there is partially a con-

tinuum between age-related and neuropathological

expression changes. On the other hand, there is a

group of genes where the expression change is specific

for the disease and the expression pattern significantly

differs from the pattern observed in age-matched

healthy controls [57–59]. The reason for the altered

gene expression is, besides the changes in the intra-

cellular signalling system, also an alteration of the

epigenetic structure. During ageing, there is a charac-

teristic change in chromatin structure owing to histone

modifications [60,61], which can profoundly influence

the accessibility of genes to transcription factors and

thus the cognitive functions [62].

2. PROCESSES CONTRIBUTING TO

BRAIN AGEING

The balance between the generation and clearance of

toxic metabolic by-products and damaged macromol-

ecules crucially influences the progression of ageing.

Evolutionarily highly conserved homeostatic mechan-

isms such as anti-oxidant, DNA maintenance, and

proteosome systems and autophagic processes, keep

control over the continuously generated toxic or non-

functional by-products and damaged macromolecules.

Thus, the expression of genes encoding elements of

these systems significantly influences the onset and

course of the ageing process. Dividing cells can further

reduce the intracellular concentration of non-degradable

particles by each division. However, neurons are prac-

tically fully post-mitotic cells, therefore they are
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especially sensitive to the accumulation of damaged,

oxidizedmacromolecules.Moreover, production of reac-

tive oxygen species (ROS) is tightly connected to energy

production and thus to mitochondrial activity [63].

Because the brain has one of the highest energy demands

in higher organisms, the balance between mitochon-

drial ROS production and activity of anti-oxidative

systems also has a high impact on the progression of its

ageing [64,65]. Similar molecular mechanisms contrib-

ute to the pathogenesis of neurodegenerative diseases

as involved in brain ageing. The selective and signifi-

cant loss of neurons in neurodegenerative disorders

reflects the differences in the vulnerability of neuronal

populations to different forms of cellular stress such as

protein misfolding, high biosynthetic or secretory

demands, oxidative stress, alterations in the dynamics

of calcium signalling, etc. [66].

The mitochondrial activity is tightly regulated,

because reduced activity leads to a diminished energy

support, whereas increased activity results in an over-

production of ROS [67]. In ageing, a reduction in

the expression of mitochondrial genes is observed

[47,52], which could be a compensatory change to

reduce ROS load. Furthermore, as mentioned earlier,

one of the largest class of genes upregulated in ageing

are involved in oxidative defence and DNA repair

[47,68]. Nevertheless, an increase in the amount of

oxidized macromolecules in ageing is a generally

observed phenomenon in a wide range of species

[69,70]. Enhanced oxidative stress in the brain gener-

ally correlates with cognitive decline [46,71] and with

an enhanced risk for the development of neuro-

degenerative diseases [72,73]. Evidence of increased

oxidative damage was found in the brain of AD

patients [74,75]. This damage was present in the

early stage of AD in humans [76] suggesting that it

plays a causal role in the pathogenesis of the disease.

In mouse models of AD, signs of oxidative stress also

preceded the appearance of learning and memory def-

icits [77–79] further supporting the hypothesis about

the potential causal role of oxidative damage in AD.

Enhanced oxidative stress was found in the dopamin-

ergic neurons in the ageing substantia nigra of

humans suffering from Parkinson’s disease [80,81]

and in the noradrenergic neurons in the locus coeru-

leus of AD patients [82]. The selective loss of

neurons in these cases is probably the result of the

increased ROS production owing to the metabolism

of catecholamines [83].

As a result, catecholaminergic neurons have depleted

anti-oxidant levels making them vulnerable to oxidative

stress. Not surprising therefore that anti-oxidants

were intensively tested as potential therapeutic agents

against the negative consequences of brain ageing

and neurodegenerative disorders [84–86]. Generally,

it was found that anti-oxidant treatment or activation

of anti-oxidative pathways improve brain functions

and partially restores age-dependent changes in gene

expression both in normal ageing [87,88] and in

models of accelerated ageing [89,90]. Clinical data

suggest that dietary anti-oxidants have some protective

effects against AD, Parkinson’s disease and amyotrophic

lateral sclerosis [91] and also in pharmacological

and genetic models of neurodegenerative disorders

[92–94]. We have to note that ROS have an impor-

tant intracellular signalling function: oxidative stress

responses may regulate autophagy and induce synaptic

growth [95,96] suggesting that long-lasting diminished

ROS production by pharmacological treatment could

have a negative impact on brain functions.

The increasing concentration of toxic metabolic

end products, misfolded macromolecules and non-

functional organelles, is a typical characteristic of the

ageing brain and it is thought to significantly contribute

to cognitive decline [46]. Neurodegenerative disea-

ses such as AD [97], Parkinson’s [98] and

Huntington’s [99] disease, are each associated with

the accumulation of specific protein aggregates, which

play a key role in the pathogenesis of the disease. Thus,

the intensity and efficacy of clearance of the damaged

molecules largely determines the progression of neuro-

degenerative disorders [100–102] but also the pace

of brain ageing in healthy individuals [46,103,104].

The significance of autophagic processes in normal

ageing is shown by a genome-wide association study

which found a significant association between genetic

variance in autophagy associated genes and survival in

healthy aged humans [105]. It is generally observed

that improving clearance with the induction of auto-

phagy [10,106] or proteasome activity [107,108] slows

down the ageing process and improves cognitive func-

tions. Moreover, it was shown that reduced autophagy

causes ageing-like decrements [109,110] and facilitates

the development of neurodegenerative diseases [111].

Not surprising therefore that induction of autophagy

was intensively tested in various models of neurodegen-

erative diseases. Although it is known that autophagy

per se contributes to neuronal death [112–114], it was

concluded that facilitation of clearance processes is a

potential strategy in the treatment of neurodegenerative

disorders [115].

The increasing amount of altered macromolecules

and release of signal molecules from ageing damaged

neurons activate the immune system of the brain

[116,117]. The major cell types of the immune system

in the brain are astrocytes and microglial cells.

Astrocytes, which are the most numerous glial cell

population of the brain, secrete cytokines and

chemokines after induction and therefore can contrib-

ute to an inflammatory environment in the brain.

Microglial cells originate from a macrophage lineage

and they are the main form of active immune defence

within the central nervous system. Glial cells and

neurons are in a mutual interaction: astrocytes but

also microglia control neuronal activity providing

trophic factors [118,119], energy [120,121] and regu-

lation of synaptic transmission [122] as well as

neurogenesis [123]. Neurons exert an inhibitory control

on the immune activity of glial cells [124]. Normal,

healthy brain ageing is associated with an increased

number of activated microglia [125–127] and with an

enhanced level of pro-inflammatory cytokines. The

increased pro-inflammatory environment in the brain

accelerates brain ageing [128,129], aggravates cognitive

deficits impairing neuronal functions [130–132] and

reduces neurogenesis [133,134]. Activated microglia

can be both anti-inflammatory (which supports the neur-

ons) and pro-inflammatory (which damages neurons).
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It is generally observed that in the ageing brainmicroglial

activation and the resulting pro-inflammatory environ-

ment contributes to cognitive impairments [135,136]

and promotes neurodegeneration [137]. In the brain of

patients suffering from neurodegenerative diseases

[138–140] and in animal models of these disorders

[141–144], signs of massive neuroinflammation are

detected. Importantly, the phenotype of both astrocytes

and microglia changes in ageing. During ageing, a

characteristic secretory phenotypewas observed in differ-

ent cell types [145], as well as in astrocytes in the brain

[146]. Senescent astrocytes are dysfunctional and pro-

vide a reduced support for neurons [147]. Microglia in

the brain of old individuals show activated, amoeboid-

like morphology, their cytoplasm contains lipofuscin

granules, and they are primed for exaggerated immune

response. Moreover, senescent microglia are less func-

tional because they have serious autophagic dysfunction

[148]. It is thought the reduced autophagy combi-

ned with an enhanced pro-inflammatory character

leads to enhanced neurotoxicity and contributes to

neurodegenerative changes [149,150]. On the basis of

significant contribution of immune system activity to

the development of cognitive deficits, it was suggested

that rejuvenation of immunity could reverse age-related

cognitive deficits [151].

3. THE CANNABINOID SYSTEM MODULATES

AGE-RELATED MOLECULAR AND CELLULAR

PROCESSES

There are several lines of evidence that cannabinoid

system activity modulates critical molecular and cellu-

lar processes influencing the pace of the ageing process

(figure 1).

(a) Oxidative stress

Phytocannabinoids and structurally related synthetic

compounds are known to possess anti-oxidant proper-

ties [152,153]. Although the structurally unrelated

endogenous cannabinoid 2-AG is able to inhibit ROS

formation in vitro [154], when considering its in vivo

ROS production

metabolic by-products

mis-folded macromolecules

damaged macromolecules

organelle deficits

antioxidant effect
facilitation of clearance

neuroinflammation
synaptic deficits

impaired neuronal networks

neuroprotection anti-inflammatory effect

cognitive decline

susceptibility to neurodegenerative diseases

repair of age-related deficits

Figure 1. Accumulation of damaged macromolecules, organelle deficits lead to impairment in neuronal functions and neuroin-

flammation. These mutually interacting processes are the major driving forces of brain ageing. Activity of cannabinoid system

antagonizes these changes and thus decreases the progression of brain aging.
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anti-oxidant properties one should keep in mind that it

is metabolized by the prostaglandin/leukotriene path-

way [155] resulting indirectly in pro-oxidant actions.

It was suggested that besides the chemical structure of

the cannabinoids, their metal-ion chelating property

could also contribute to their anti-oxidant capacity

[156]. The protective effect of cannabinoids against

oxidative stress in vitro in neurons is dependent on

their anti-oxidant properties as cannabinoid receptors

are not involved in this process [157,158]. However,

in astrocytes, the CB1 receptor mediates the protective

effect of cannabinoids, because cannabinoids prevented

H2O2-induced loss of viability of astrocytes in cell cul-

ture in a CB1-receptor-dependent manner [159]. For

the neuroprotective effect of cannabinoids both their

anti-oxidant and receptor binding properties contrib-

ute, as was shown in a rodent model of Parkinson’s

disease [160,161]. The neuroprotective effect of the

CB1 receptor agonists D9-THC and WIN55,212-2

was blocked by the CB1 antagonist rimonabant on

hippocampal neurons in culture [162] suggesting

further the importance of cannabinoid receptor activity

in neuroprotection. It is important to note that the can-

nabinoidsmodulate oxidative load in a cell-type-specific

manner: in glioma [163] and leukaemia cell lines [164]

but also in hepatic cells [165,166], cannabinoids induce

cell death by increasing oxidative stress.

(b) Clearance of damaged macromolecules

The cannabinoid system can reduce oxidative load

besides reducing the amount of ROS by influencing

the removal of damaged macromolecules. It has been

recently shown that the majority of CB1 receptors

do not reach the cell surface but instead show an

intracellular localization. A significant part of the intra-

cellular CB1 receptors is present at lysosomes and late

endosomes [167,168]. Cannabinoids at physiological

concentrations increase lysosomal stability and integrity

[169]. On the other hand, D9-THC in high concen-

tration can increase lysosomal permeability through

CB1 receptor binding, whichmay contribute to the neu-

rotoxic effect of the drug [170]. Whether decreased

CB1 receptor activity owing to genetic variation or epi-

genetic changes in humans influences lysosomal

function and thus contributes to the development of

neurodegenerative diseases is not known.

Cannabinoids have been previously implicated in

inducing autophagy in various cancer cell types:

glioma [171] hepatocellular carcinoma [172], pancrea-

tic adenocarcinoma [173], and these effects are at least,

in part, dependent on the CB1 receptor.We have found

an altered autophagosomal and lysosomal turnover

in Cnr1– /2 mice (A. Piyanova 2012, unpublished

results), suggesting a regulatory role for endocannabi-

noid signalling in autophagy also in non-cancerous

tissues. This hypothesis was recently supported by Red-

lich et al. [174], who showed that the endocannabinoid

palmitoylethanolamide increased the phagocytosis of

murine microglial cells. The autophagy dysregulation

owing to reduced CB1 receptor signalling is probably

more important in ageing, as there is a general increase

in oxidative load as well as formation of lipofuscin-like

aggregates in the neurons and microglial cells.

(c) Mitochondrial activity

Cannabinoid system activity influences the amount

of intracellular ROS not only via their anti-oxidant buf-

fering capacity but also by regulating mitochondrial

activity [175]. It has been recently shown that CB1

receptors are also present on mitochondrial membranes

and regulate the activity of mitochondria [176].

Whether cannabinoids decrease or increase mitochon-

drial activity is not fully known: an early study showed

that cannabinoids can decrease oxidative metabolism

of isolated mitochondria [177], which was later sup-

ported by showing that CB1 agonists decrease oxygen

consumption, ROS production, membrane potential

[175] and oxidative phosphorylation [178]. On the

other hand, an increase in brain mitochondrial oxidative

phosphorylation was shown ex vivo in anandamide or

D9-THC treated rats, which was antagonized by the

CB1 receptor blocker SR141716A [179]. Under cellular

stress, cannabinoids seems to be protective for the mito-

chondria: the cannabinoid receptor agonist CP55,940

and JWH-015 both attenuated mitochondrial damage

against paraquat-induced oxidative stress [180] and the

endogenous cannabinoid 2-AG decreased calcium-

induced cytochrome c release frommitochondria [181].

(d) Regulation of glial activity

The cannabinoid system also influences ROS levels

indirectly through the regulation of glial activity [182].

Both astrocytes and microglia express CB1 and

CB2 cannabinoid receptors in an activity-dependent

manner [183–185]. In the microglia, the expression of

CB2 receptor exceeds the expression of CB1 receptors

and correlates with microglial phenotype and activity

[186]. Activation of glial CB2 receptors attenuates

glial activation [187] and prevents neurodegeneration

and reduces symptoms inmousemodel of Huntington’s

disease [188]. These data suggest that cannabinoids

regulate glial activity primarily through CB2 receptors.

Glial cells not only receive cannabinoid signals but can

themselves produce cannabinoids such as anandamide

[189], 2-AG [190] and palmitoylethanolamide [191],

and also express the enzymes involved in the synthesis

and degradation of endocannabinoids [192–194].

Because both neurons and glia express elements of the

cannabinoid system, it was hypothesized that the canna-

binoid system plays an important role in neuron–glia

communication. In support of this hypothesis, it was

shown that cannabinoids modulate glial activity by

directly binding to the glial cannabinoid receptors

[185,195,196] and indirectly by modulating neuro-

nal activities [197]. During central nervous system

inflammation, as in multiple sclerosis [195], AD [198]

or HIV encephalitis [199], a general upregulation

of cannabinoid system activity is observed. Increa-

sed activity of the cannabinoid system is generally

anti-inflammatory: elevation of anandamide levels

[200,201] or activation of the cannabinoid receptor by

synthetic receptor agonists [202,203] inhibits the pro-

duction of pro-inflammatory mediators and reduces

microglial migration in vitro. This effect may contribute

to the beneficial effect of the cannabinoid system against

neurodegeneration [204]. On the other hand, increased

2-AG levels increase inhibitory signalling and impair
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the control of retrograde neurotransmission thus

contributing to the synaptic impairments in AD [198].

(e) Synaptic plasticity and neurogenesis

The age-dependent decline in brain-derived neuro-

trophic factor (BDNF) expression plays a crucial role

in the chain of events leading to functional deficits.

BDNF signalling regulates morphological and physio-

logical synaptic plasticity [205], and restoration of

BDNF levels was crucial for the rescue of synaptic plas-

ticity in aged animals [206]. Application of CB1

receptor agonists increased BDNF expression both

in vitro and in vivo [207,208], which may significantly

contribute to the neuroprotective effect of the cannabi-

noids. This hypothesis was supported by Marsicano

showing that induction of BDNFexpression contributes

to the protective effect of CB1 receptor activity against

excitotoxicity [209]. CB1 receptor activity can enhance

TrkB signalling partly by activating MAP kinase/ERK

kinasepathways [210]but alsobydirectly transactivating

the TrkB receptors [211]. The fact that genetic deletion

of CB1 receptors leads to a decreased BDNFexpression

suggests that endogenous cannabinoids exert a tonic

control over BDNF expression [212]. Clinical data test-

ing the BDNF levels in marijuana users and control

individuals [213] also support the role of CB1 receptor

activity on BDNF expression.

Besides influencing synaptic plasticity, cannabinoid

system activity also facilitates embryonic and adult

neurogenesis. Neural progenitor cells express the

elements of the cannabinoid system, and thus actively

use endocannabinoids as signalling molecules [214].

Activation of cannabinoid receptors by agonists [215,

216] or by elevation of endocannabinoid levels

[215,217,218] promotes cell proliferation, neurogen-

esis and neuronal diversification [219]. It was shown

that CB1 receptor activity is necessary for the up-

regulation of neurogenesis and proliferation after

excitotoxic stress [220]. In good agreement with these

findings, genetic deletion of CB1 receptors leads to

defective neurogenesis [221]. The consequence of this

effect on the learning phenotype is unclear but it is

unrelated to the early loss of cognitive abilities in this

strain [197].

4. CANNABINOID SYSTEM MAY CHANGE

DURING AGEING IN THE BRAIN

Because cannabinoid system activity regulates mechan-

isms underlying normal and pathological ageing,

age-dependent change in the activity of the cannabinoid

system might contribute to the process of ageing.

Although the results of different groups are sometimes

conflicting, a decline in cannabinoid system activity in

ageing is probable. Berrendero, in one of his earlier

works, found a lower level of CB1 receptor level in rats

in a brain-region-specific manner: the reduction was

most prominent in the cerebellum and cerebral cortex,

whereas it was less pronounced but still significant in

the limbic and hypothalamic structures as well as

in the hippocampus [222]. A similar decrease in both

CB1 receptor binding and mRNA levels was found in

most of the basal ganglia in rats during ageing [223].

Also, in isolated rat hippocampal synaptosomes, a

reduction in CB1 receptor densities in ageing was

described [224]. On the contrary, Liu et al. [225]

found no differences in CB1 receptor protein levels

between four- and 24-month-old rats in the hippo-

campus. They found, however, a significant difference

in the CB1 receptor levels in the adjacent structures:

they were reduced in the postrhinal, whereas elevated

in the entorhinal and temporal cortices in the old ani-

mals. Wang et al. [226], testing C57BL/6J mice, did

not find differences in CB1 densities in the hippo-

campus, limbic forebrain, amygdala and cerebellum.

On the other hand, he reported a significantly reduced

coupling between the receptors and Gi proteins in the

limbic forebrain during ageing, which could be respon-

sible for a reduced CB1 receptor signalling even when

receptor levels are unchanged. In humans, a sex-depen-

dent increase in CB1 receptor binding during ageing in

the basal ganglia, lateral temporal cortex and in limbic

areas was reported [227]. Whether the level of endo-

genous cannabinoids changes in ageing is unclear:

some studies have reported diminished anandamide

levels during ageing in CB1-receptor-deficient mice

[228,229], whereas others found no significant differ-

ences in the endocannabinoid levels during ageing in

different brain regions in WTor CB1-receptor-deficient

mice [226]. There are also considerable differences in the

endogenous cannabinoid concentrations reported in

those earlier studies compared with more recent work

(for review, see Buczynski & Parsons [230]). It is now

known thatmultiple factors can influence the endogenous

cannabinoid levels, such as post-mortem tissue handling

and sample extraction methods, thus contributing to

discrepancies between the studies from different groups.

5. AGE-DEPENDENT EFFECT OF THE

CANNABINOID SYSTEM ON LEARNING

AND MEMORY

Considering that the cannabinoid system regulates

processes involved in ageing one would expect that

(i) reduced activity of the cannabinoid system in geneti-

cally modified animals is accompanied by accelerated

progression of ageing, and (ii) cannabinoid receptor

agonists have different effects in young and old individ-

uals. And in reality, genetic deletion of CB1 receptors

leads to an age-related change in the learning and

memory abilities of mice. Young CB1 receptor knock-

out (CB12/2) mice showed a superior performance in

a broad range of models including object [231] and

social recognition tests, in skill and operant learning

models [232] as well as enhanced long-term poten-

tiation [233]. The learning ability of 12-month-old

CB12/2 mice is, however, impaired and this impair-

ment was accompanied by a loss of principal neurons

in the hippocampus. Importantly, the early onset of

age-related changes was specific for the cognitive func-

tions in the brain, because neither the motor nor

sensory abilities were affected [5]. The peripheral

organs also did not show signs of early ageing except

in the skin, where an atrophy of the subdermal fat

layer was present in 12-month-old CB12/2 but not in

wild-type mice [5]. A following study showed that the

early onset of cognitive decline and neuronal loss was

accompanied by neuroinflammatory changes in the
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hippocampus, but not in the cortex or striatum [197]. It

was suggested that CB1 receptors on the GABAergic

neurons play a principal role in the regulation of glial

activity and thus in protection against age-related

changes: deletion of CB1 receptors from the forebrain

GABAergic but not glutamatergic neurons resulted in

a similar ageing phenotype as found in the constitutive

knockouts [197]. Interestingly, similar neuroinflamma-

tory changes were not present in the cortex and

striatum, brain areas having high expression of CB1

receptors and containing abundant GABAergic neur-

ons. Thus, we can conclude that CB1 receptor activity

plays an important role in anti-ageing defence. On the

other hand, genetic deletion of CB2 receptors does

not lead to similar enhanced lipofuscin accumulation

or glial activation in the brain (A. Bilkei-Gorzo 2012,

unpublished observation), therefore this receptor type

is probably not involved in age-related processes. The

question of whether 2-AG or anandamide is responsible

for the anti-ageing activity of CB1 receptor is not known:

although animals with genetic deletion of key enzymes of

endocannabinoid metabolism are available [234], their

age-related phenotype has not yet been published. On

the basis of previous results, one would expect a delayed

or slowed ageing in animals having increased CB recep-

tor signalling. In good accordance with this assumption,

animals lacking the anandamide degrading enzyme fatty

acid amino hydrolase (FAAH) show an attenuated

ageing associated decline in cardiac function and

decreased expression of inflammation-associated genes

[235]. Whether genetic variation in genes encoding the

elements of the cannabinoid system in humans contrib-

utes to the variation in the progression of age-related

cognitive decline is an open question.

The age dependency of cannabinoids on cognitive

functions was demonstrated by a number of studies

showing that adolescents are more sensitive to the

adverse long-term effects of cannabinoid receptor ago-

nists on cognitive abilities as adults [236–238]. On

the basis of biological effects of cannabinoids, it was

suggested that in old individuals cannabinoid receptor

ligands may have even beneficial effects against age-

related cognitive deficits [239]. Only a low number of

publications exists focusing on the influence of cannabi-

noids on brain functions in healthy aged animals, but

their results support this hypothesis: the CB1 receptor

agonist WIN-55212-2 attenuated spatial memory

impairment, reduced the number of activated microglia

[240] and triggered neurogenesis [216] in aged rats.

Similar to CB1 agonists, CB2 agonists or blockers of

FAAH also enhanced proliferation of neuronal progeni-

tor cells in old individuals [215]. These reports and the

accelerated ageing phenotype of CB1 knockout animals

together suggest that elevation of cannabinoid system

activity ameliorates symptoms of brain ageing.

6. POTENTIAL ROLE OF CANNABINOIDS

IN THE TREATMENT OF

NEURODEGENERATIVE DISEASES

It was suggested that modulators of cannabinoid

system activity could be a therapeutic tool for the treat-

ment of neurodegenerative diseases [241,242]. At first

sight, it is striking that cannabinoid agonists,

substances known to impair cognitive functions,

could be beneficial in neurodegenerative cognitive dis-

orders. However, cannabinoid receptor activation

could reduce oxidative stress and excitotoxicity, sup-

press neuroinflammatory processes and thus alleviate

the symptoms of neurodegenerative motor [243] and

cognitive diseases [244]. In vitro studies together

with pharmacological experiments on animal models

of AD generally supported the speculations about

the therapeutic value of CB1 receptor agonists in the

treatment of AD [245]. Cannabinoids protected

against microglia-mediated neurotoxicity elicited by

amyloid beta protein in rat cortical coculture [246].

In vivo, chronic treatment with CB1 agonists in the

pre-symptomatic and early symptomatic phases ame-

liorated cognitive deficits and reduced microglial

activity and cortical amyloid b-protein levels in

APP2576 and APP/PS1 transgenic mice [247,248].

In rats, CB1 receptor agonists prevented cognitive

impairment and microglial activation induced by intra-

cerebroventricular injection of amyloid b-protein
[246]. Despite the promising preclinical results, the

detailed clinical evaluation of cannabinoids in AD

patients is still missing. One pilot study, however,

reported a significant reduction in nocturnal motor

activity and agitation after dronabinol treatment in

patients in late stages of dementia [249]. Cannabinoid

treatment effectively attenuated the loss of dopamin-

ergic neurons in rat models of Parkinson’s disease

[160,161] and proved to be neuroprotective in

human neuronal cell culture exposed to Parkinson’s

disease relevant toxins [250]. The authors suggested
that the anti-oxidative effect and suppression of micro-

glial activity by cannabinoids together play a major

role in these models [161,251]. The three published

clinical trials in Parkinson’s disease patients did

not provide a clear answer whether cannabinoids

modify the progression or the outcome of the disease.

A double-blind, placebo-controlled crossover study

that tested the symptom relieving effect of cannabis

testing nine patients reported a significant reduction

in levodopa-induced dyskinesia [252]. The following

two clinical trials using a larger number of patients

could not find any improvement in levodopa treatment

induced dyskinesia or parkinsonian motor disability

using cannabis [253] or the CB1 receptor antagonist

rimonabant [254]. The situation is similar in the

case of Huntington’s disease and amyotrophic lateral

sclerosis: a limited number of promising preclinical

results using animal models of the diseases are

reported but the supporting clinical data are missing

[255–258]. Both cannabinoid receptor agonists and

elevation of cannabinoid levels led to a significant

improvement in disease progression and alleviation of

symptoms in rodent models of multiple sclerosis

[259,260]. Moreover, a case–control human genetic

study reported an association between the genetic var-

iance of CNR1 and primary progressive multiple

sclerosis [261].Unlikewith other neurodegenerative dis-

orders, numerous clinical studieswere carried out testing

different cannabis plant preparations and synthetic can-

nabinoids on patients with multiple sclerosis. It is clear

from these studies that cannabinoid treatment alleviates

the symptoms of the disease, reducing pain and sleep
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disturbances and improving general well being [262].

There are some conflicting results published regarding

the effect of cannabis plant extracts on spasticity

[263,264], but in a recent meta-analysis a trend for

reduced spasticity was reported [265]. Generally, the

treatment was well tolerated and maintained its efficacy

after long-lasting administration [266], which is a prere-

quisite in the treatment of a chronic progressive disease.

The recently completed CUPID study (http://sites.

pcmd.ac.uk/cnrg/cupid.php) focused on the effect of

THC on the progression of multiple sclerosis. In this

large study, which involved 493 patients and ran for 8

years, the researchers found beneficial effects in patients

in the initial phase of the diseases but no evidence for

slowing down the progression of the disease generally.

7. CONCLUSION

Experimental evidences show that cannabinoid system

activity is neuroprotective regulating critical homeostatic

processes and that cannabinoid signalling is possibly

decreasing in ageing. Thus, elevation of cannabinoid

receptor activity either by pharmacological blockade of

the degradation of cannabinoids or by receptor agonists

could be a promising strategy for slowing down the pro-

gression of brain ageing and for alleviating the symptoms

of neurodegenerative disorders.
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