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ABSTRACT

The effect of the plant-derived nonpsychotropic cannabi-
noid, cannabidiol (CBD), on the function of hydroxytrypta-
mine (5-HT)3A receptors expressed in Xenopus laevis oo-
cytes was investigated using two-electrode voltage-clamp
techniques. CBD reversibly inhibited 5-HT (1 �M)-evoked
currents in a concentration-dependent manner (IC50 � 0.6
�M). CBD (1 �M) did not alter specific binding of the 5-HT3A

antagonist [3H]3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylin-
dol-3-yl)propan-1-one (GR65630), in oocytes expressing
5-HT3A receptors. In the presence of 1 �M CBD, the maximal
5-HT-induced currents were also inhibited. The EC50 values
were 1.2 and 1.4 �M, in the absence and presence of CBD,
indicating that CBD acts as a noncompetitive antagonist of

5-HT3 receptors. Neither intracellular BAPTA injection nor
pertussis toxin pretreatment (5 �g/ml) altered the CBD-
evoked inhibition of 5-HT-induced currents. CBD inhibition
was inversely correlated with 5-HT3A expression levels and
mean 5-HT3 receptor current density. Pretreatment with ac-
tinomycin D, which inhibits protein transcription, decreased
the mean 5-HT3 receptor current density and increased the
magnitude of CBD inhibition. These data demonstrate that
CBD is an allosteric inhibitor of 5-HT3 receptors expressed in
X. laevis oocytes. They further suggest that allosteric inhibi-
tion of 5-HT3 receptors by CBD may contribute to its phys-
iological roles in the modulation of nociception and emesis.

The serotonin (5-HT)3 receptor, a member of the ligand-

gated ion channel family, mediates rapid and transient

membrane-depolarizing effect of 5-HT in the central and

peripheral nervous system (Yakel and Jackson, 1988). An

involvement of 5-HT3 receptors in pain transmission, mood

disorders, and drug abuse has been reported (for reviews,

see Riering et al., 2004; Faerber et al., 2007; Engleman et

al., 2008). Furthermore, 5-HT3 receptor antagonists are

effective therapeutic agents for the treatment of chemo-

therapy-induced nausea and vomiting (Slatkin 2007;

Thompson and Lummis, 2007).

Previous studies showed that 5-HT3 receptor antagonists

and cannabinoids (CBs) produce similar pharmacological ef-

fects, such as nonopioid receptor-mediated analgesia and

antiemesis (for reviews, see Tramèr et al., 2001; Martin and

Wiley, 2004; Riering et al., 2004). In fact, synthetic �9-tetra-

hydrocannabinol (THC), dronabinol, (Marinol), and THC an-

alogs such as nabilone (Cesamet) are approved by the United

States Food and Drug Administration for use in chemother-

apy-induced nausea and vomiting refractory to conventional
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antiemetic therapy (for reviews, see Tramèr et al., 2001;

Martin and Wiley, 2004; Slatkin, 2007).

The limitation of the therapeutic utility of THC and its

above-mentioned chemical analogs is the potential develop-

ment of psychoactive effects through central nervous system

CB1 receptor. Cannabidiol (CBD) is one of the most abundant

cannabinoids of Cannabis sativa, with reported antioxidant,

anti-inflammatory, and antiemetic effects. It is well tolerated

and is without side effects when chronically administered to

humans (for reviews, see Mechoulam et al., 2007; Izzo et al.,

2009; Scuderi et al., 2009). Furthermore, CBD is devoid of

psychoactive properties due to a low affinity for the CB1 and

CB2 receptors (Mechoulam et al., 2007; Izzo et al., 2009;

Pertwee, 2009). Thus, pharmaceutical interest in this com-

pound has risen significantly in recent years (Izzo et al.,

2009; Pertwee, 2009; for review, see Scuderi et al., 2009).

The effects of THC; synthetic cannabinoid receptor agonists

such as WIN55,212-2 [4,5-dihydro-2-methyl-4(4-morpholinyl-

methyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-

6-one], CP55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl-

)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], and JWH-015

[1-propyl-2-methyl-3-(1-naphthoyl)indole] (Fan, 1995; Barann et

al., 2002); and the endocannabinoid anandamide (Oz et al., 1995,

2002a; Barann et al., 2002; Xiong, 2008) on the functional proper-

ties of 5-HT3 receptors have been shown in previous in vitro stud-

ies. However, whether nonpsychotropic cannabinoids such as can-

nabidiol affect 5-HT3A receptor function is unknown. In the

present study, we have tested the hypothesis that CBD may pro-

duce its pharmacological effects, at least in part, via 5-HT3 recep-

tors. For this purpose, the complementary RNA (cRNA) encoding

the mouse 5-HT3 subunit A of the receptor was expressed in

Xenopus laevis oocytes, and the effect of CBD on receptor function

was investigated.

Materials and Methods

Mature female X. laevis frogs were purchased from Xenopus I

(Ann Arbor, MI). They were housed in dechlorinated tap water at

18°C under a 12:12-h light/dark cycle and fed beef liver at least twice

a week. Clusters of oocytes were removed surgically under tricaine

(Sigma-Aldrich , St. Louis, MO) anesthesia (0.15%), and individual

oocytes were manually dissected away in a solution containing 88

mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 0.8 mM MgSO4, and 10 mM

HEPES, pH 7.5. Dissected oocytes were stored 2 to 7 days in modified

Barth’s solution containing 88 mM NaCl, 1 mM KCl, 2.4 mM

NaHCO3, 0.3 mM Ca(NO3)2, 0.9 mM CaCl2, 0.8 mM MgSO4, and 10

mM HEPES, pH 7.5, supplemented with 2 mM sodium pyruvate,

10,000 IU/l penicillin, 10 mg/l streptomycin, 50 mg/l gentamicin, and

0.5 mM theophylline. Oocytes were placed in a 0.2-ml recording

chamber and superfused at a constant rate of 3 to 5 ml/min. The

bathing solution consisted of 95 mM NaCl, 2 mM KCl, 2 mM CaCl2,

and 5 mM HEPES, pH 7.5. The amount of 5-HT3A receptor cRNA

injected into oocytes varied from 1 to 30 ng, as indicated. However,

the injection volume of diethylpyrocarbonate-treated distilled water

was kept at 30 nl throughout the experiments. The cells were im-

paled with two standard glass microelectrodes filled with 3 M KCl

(1–3 M�). The oocytes were routinely voltage-clamped at a holding

potential of �70 mV using an GeneClamp-500B amplifier (Molecular

Devices, Sunnyvale, CA). Current responses were digitized by A/D

converter and analyzed using pClamp 8 (Molecular Devices) run on

an IBM PC or directly recorded on a 2400 rectilinear pen recorder

(Gould Instrument Systems Inc., Cleveland, OH). Current-voltage

curves were generated by holding each membrane potential in a

series for 50 to 60 s, followed by a return to �70 mV for 5 min. Oocyte

capacitance was measured by a paired ramp method described pre-

viously (Oz et al., 2004a). In brief, voltage ramps were used to elicit

constant capacitive current, Icap, and the charge associated with this

current was calculated by the integration of Icap. Ramps had slopes of

2 V/s and durations of 20 ms and started at a holding potential of

�90 mV. A series of 10 paired ramps was delivered at 1-s intervals

and averaged traces were used for charge calculations. In each oo-

cyte, the averages of five to six measurements were used to obtain

values for membrane capacitance (Cm). Currents for Icap recordings

were filtered at 20 kHz and sampled at 50 kHz. Current density was

calculated by normalizing the average of three consecutive control

currents to the oocyte capacitance.

Compounds were applied by addition to the superfusate. All

chemicals used in preparing the solutions were from Sigma-

Aldrich. Pertussis toxin (PTX), BAPTA, actinomycin D (ActD),

5-HT, and MDL72222 [tropanyl 3,5-dichlorobenzoate] were pur-

chased from Tocris Bioscience (Ellisville, MO). Cannabidiol was

generously provided by National Institute on Drug Abuse Drug

Supply System, National Institutes of Health (Rockville, MD).

Procedures for the injections of PTX (50 nl; 50 �g/ml) or BAPTA

(50 nl; 200 mM) were performed as described previously (Oz et al.,

1998). Injections were performed 1 h before recordings using

oil-driven ultramicrosyringe pumps (Micro4; WPI, Sarasota, FL).

Stock solutions of CBD were prepared in dimethyl sulfoxide at a

concentration of 30 mM. Dimethyl sulfoxide alone did not affect

5-HT3A receptor function when added at concentrations as high as

0.2% (v/v), a concentration 2 times greater than the most concen-

trated application of the agents used. Electrophysiological record-

ings from oocytes were conducted 3 to 4 days after cRNA injec-

tions, and both control and treatment (PTX and BAPTA) groups

were recorded on the same days.

Synthesis of cRNA. The cDNA clone of the mouse and human

5-HT3A subunits were provided by Dr. David Julius (University of

California, San Francisco, San Francisco, CA) and OriGen Technol-

ogies, Inc. (Rockville, MD), respectively. cRNAs were synthesized in

vitro using a mMessage mMachine RNA transcription kit (Ambion,

Austin, TX). The quality and sizes of synthesized cRNAs were con-

firmed by denatured RNA agarose gels.

Radioligand Binding Studies. Oocytes were injected with 10 ng

of mouse 5-HT3A cRNA, and functional expression of the receptors

was tested by electrophysiology on day 3. Isolation of oocyte mem-

branes were carried out by modification of a method described pre-

viously (Oz et al., 2004b). In brief, oocytes were suspended (20

�l/oocyte) in a homogenization buffer (HB) containing 10 mM

HEPES, 1 mM EDTA, 0.02% NaN3, 50 �g/ml bacitracin, and 0.1 mM

phenylmethylsulfonyl fluoride, pH 7.4, at 4°C on ice and homoge-

nized using a motorized Teflon homogenizer (six strokes, 15 s each at

high speed). The homogenate was centrifuged for 10 min at 800g.

The supernatant was collected and the pellet was resuspended in HB

and recentrifuged at 800g for 10 min. Supernatants were then com-

bined and centrifuged for 1 h at 36,000g. The membrane pellet was

resuspended in HB at the final protein concentration of 0.5 to 0.7

mg/ml and used for the binding studies.

Binding assays were performed in 500 �l of 10 mM HEPES, pH

7.4, containing 50 �l of oocyte preparation and 1 nM [3H]3-(5-

methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one

(GR65630; 58.7 Ci/mmol; PerkinElmer Life and Analytical Sci-

ences, Boston, MA). Nonspecific binding was determined using

100 �M MDL72222. Oocyte membranes were incubated with

[3H]GR65630 in the absence and presence of CBD at 4°C for 1 h

before bound radioligand was separated by rapid filtration onto

GF/B filters (Whatman Inc. Piscataway, NJ) presoaked in 0.3%

polyethylenimine. Filters were then washed with two 5-ml washes

of ice-cold HEPES buffer and left in 3 ml of scintillation fluid for

at least 4 h before scintillation counting was conducted to deter-

mine amounts of membrane-bound radioligand.

Data Analysis. For the nonlinear curve fitting and regression

fits of the radioligand binding data, the computer software Origin
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(OriginLab Corp., Northampton, MA) was used. In functional

assays, average values were calculated as mean � S.E.M.. Statis-

tical significance was analyzed using ANOVA or Student’s t test.

Concentration-response curves were obtained by fitting the data

to the logistic equation y � {(Emax � Emin)/(1 � [x/EC50]n)} � Emin,

where x and y are concentration and response, respectively, Emax

is the maximal response, Emin is the minimal response, EC50 is the

half-maximal concentration, and n is the slope factor.

Results

Bath application of neither 5-HT (50 �M) nor CBD (10 �M)

produced detectable currents in oocytes injected with diethyl-

pyrocarbonate-treated distilled water (30 nl/oocyte; n � 6). Ap-

plication of CBD (10 �M) for 20 min did not affect membrane

resistance, Cm, or resting membrane potential in oocytes

injected with 3 ng of cDNA encoding the 5-HT3A receptor

(Table 1). Currents evoked by 5-HT (1 �M) were maximally

inhibited by CBD within 10 to 15 min after the initiation of

CBD perfusion. After CBD washout, recovery was slow (e.g.,

20–30 min; Fig. 1A). Time course studies assessing the effects of

25-min CBD application on the mean amplitude of 5-HT-in-

duced currents from six oocytes are presented in Fig. 1B.

In the next series of experiments, we examined the concen-

tration-response relationship of the CBD effects on the func-

tion of 5-HT3 receptors (Fig. 1C). The threshold concentration

for inhibition by CBD was 0.1 �M, and maximal inhibition

was achieved in concentrations ranging between 10 and 30

�M. The inhibition of 5-HT (1 �M)-induced current by 25-min

CBD application was concentration-dependent, with an IC50

value of 0.6 � 0.1 �M and a slope value of 0.9 (Fig. 1C).

Because the participation of Gi/o proteins in the signaling

of the receptors activated by the cannabinoids and certain

CBD analogs have been reported previously (Járai et al.,

1999), we tested the effect of CBD in control (distilled water-

injected) and PTX-injected oocytes expressing 5-HT3 recep-

tors. There was no significant difference in CBD inhibition of

5-HT responses between controls and PTX-injected cells

(ANOVA: F3,18 � 130.9, P 	 0.001, n � 5–6 for the effect of

CBD compared with controls in distilled water-injected and

PTX-injected groups; Bonferroni test: P 
 0.05 for the signif-

icance of CBD inhibition between controls and PTX group;

Fig. 2A).

Because CBD has been shown to increase intracellular

Ca2� levels in neurons and glia (Drysdale et al., 2006; Ryan

et al., 2006), we investigated the effect of the Ca2� chelator

BAPTA on CBD inhibition of 5-HT responses. In oocytes

injected with BAPTA, the inhibition of 5-HT responses by 20

min CBD application was not significantly different from

controls (ANOVA: F3,20 � 110.7, P 	 0.001, n � 5–7 for the

effect of CBD compared with controls in distilled water-in-

jected and PTX-injected groups; Bonferroni test: P 
 0.05 for

the significance of CBD inhibition between distilled water-

injected and PTX-injected group; Fig. 2B).

Examination of the voltage dependence of the CBD inhibi-

tion indicated that the degree of inhibition of the 5-HT (1

�M)-induced currents did not vary with membrane potential

(Fig. 2C). In addition, there was no change of the reversal

potential of the 5-HT-activated ion currents [control: 2 � 2

mV in controls; CBD (1 �M): 4 � 3 mV], indicating that

neither the ion selectivity of the channel nor the driving force

on Na� and Ca2� was affected by CBD. Moreover, quantita-

tive evaluation of data for the inhibitory effect of CBD at

different membrane potentials (Fig. 2D) showed no statisti-

cally significant differences on the effect of CBD at different

holding potentials (among �20, �40, �60, and �80 mV

groups; ANOVA: F3,16 � 0.11, P � 0.953, n � 5 for each

group).

By definition, an open channel blockade requires the open-

ing of the channel by the binding of the agonist to the recep-

TABLE 1

Effects of cannabidiol (10 � M) on the passive membrane properties of
the X. laevis oocytes expressing 5-HT3 receptors

Rm Cm Vm

M� nF mV

Control (n � 11) 1.1 � 0.3 193 � 17 �35.2 � 3.4
20-min CBD (n � 9) 1.4 � 0.3 197 � 14 �36.9 � 3.8

Rm, membrane resistance; Vm resting membrane potential.

Fig. 1. Effect of cannabidiol on 5-HT3 receptor-mediated ion currents.
A, records of currents activated by 1 �M 5-HT in control (left), coappli-
cation of 1 �M CBD and 5-HT after 20-min CBD application (middle), and
30-min recovery (right). B, time course of the effect of CBD application (25
min) on the maximal amplitudes of the currents induced by 1 �M 5-HT at
5-min intervals. Data points represent means � S.E.M. of six cells.
C, concentration-response curve for cannabidiol inhibition of 5-HT3 re-
ceptor-mediated ion currents. For all concentrations used, CBD was
applied for 25 min. Data points are the mean � S.E.M. (n � 6–7); error
bars not visible are smaller than the size of the symbols. The curve is the
best fit of the data to the logistic equation described under Materials and
Methods. The IC50 value for CBD was 0.6 � 0.1 �M, with a slope value
of 0.9.
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tor. Thus, in the absence of an agonist, the degree of blockade

should be related to the frequency of channel activation.

Therefore, the extent of CBD inhibition of the 5-HT3A recep-

tors was compared in cells exposed to 5-HT at 5-min intervals

with those exposed at 10- and 20-min intervals (Fig. 3A).

During application of 1 �M CBD for 20 min, CBD was equally

effective in inhibiting currents activated at 5-, 10-, and 20-

min intervals (between 5-, 10-, and 20-min interval groups,

ANOVA: F2,14 � 0.29, P � 0.746, n � 5–7; Fig. 3B), indicating

that the frequency of channel opening does not alter the

extent of CBD inhibition and that the channel does not need

to be opened by the agonist for CBD to be effective. Recovery

from an open channel blocker would be facilitated by the

increases in opening frequencies. Therefore, we analyzed the

extent of recovery from CBD inhibition at different 5-HT

stimulation intervals (Fig. 3C). The recovery from CBD inhi-

bition was not altered by 5-HT stimulation intervals, sug-

gesting that CBD is not trapped in the channel when the

channel closes, as can occur with open channel blocking

drugs (between 5-, 10-, and 20-min interval groups, ANOVA:

F2,14 � 1.06, P � 0.379, n � 5–7).

CBD may alter 5-HT3 receptor function via competitive

inhibition of 5-HT binding to the receptor. To examine this

issue, we performed radioligand binding assays (Fig. 4, A

and B). In competition experiments, 5-HT concentration-

dependently inhibited the specific binding of 1 nM

[3H]GR65630 (Fig. 4A). The concentration-dependent inhi-

bition of [3H]GR65630 binding by 5-HT was not altered by

1 �M CBD (Fig. 4A). The IC50 value in the absence and

presence of CBD was 0.7 � 0.3 and 0.6 � 0.2 �M, respec-

tively (Student’s t test: t � 1.2, df � 17, P � 0.24, n �

8 –11). Likewise, increasing CBD concentrations did not

reduce specific [3H]GR65630 binding to membranes of oo-

cytes expressing 5-HT3A receptor cDNA (Fig. 4B).

In oocytes expressing 5-HT3A receptor, the concentration-

response curve of 5-HT was examined in the absence and

presence of 1 �M CBD. The EC50 value (mean � S.E.M.) in

the absence and presence of CBD was 1.2 � 0.2 and 1.4. � 0.1

�M, respectively (Student’s t test: t � �0.96, df � 7, P � 0.36,

n � 4–5). As shown in Fig. 4C, CBD did not significantly

alter EC50 values and inhibited the maximal 5-HT-responses

to the same percentage of control values (n � 5), suggesting

that CBD inhibits 5-HT-activated ion currents in a noncom-

petitive manner.

Because our experiments were conducted using mouse

5-HT3A receptor cRNA, we compared the effect of 1 �M

CBD on the function of mouse and human 5-HT3A recep-

tors expressed in X. laevis oocytes (3 ng of cRNA/oocyte).

Application of CBD for 20 min caused a significant inhibi-

tion of currents induced by 1 �M 5-HT. The magnitude of

CBD inhibition did not differ between mouse (61 � 4%

inhibition; n � 5) and human 5-HT3A receptors (65 � 5%

Fig. 2. Effects of pertussis toxin treatment, calcium chelator, BAPTA
injection, and membrane potential changes on cannabidiol inhibition of
5-HT3 receptor-mediated ion currents. A, bar presentation of the effects of
1 �M CBD application (20 min) on the maximal amplitudes of 5-HT-
induced currents in oocytes injected with 50 nl of distilled water (controls;
n � 6) or 50 nl of PTX (50 �g/ml; n � 5). Bars represent the means �
S.E.M. B, bar presentation of the effects of 1 �M CBD application (20
min) on the maximal amplitudes of 5-HT-induced currents in oocytes
injected with 50 nl of distilled water, controls (n � 5) or BAPTA (50 nl;
200 mM; n � 7). Bars represent the means � S.E.M. C, current-voltage
relationship of 5-HT-activated current in the absence (open circles) and
presence (closed circles) of 1 �M CBD. Currents were activated by 1 �M
5-HT in the same oocyte. D, percentage inhibition of 5-HT-activated
current by 1 �M CBD at different membrane potentials; there are no
significant differences among these values at different membrane poten-
tials (ANOVA: P 
 0.05; n � 5).

Fig. 3. Effect of 5-HT stimulation-interval alterations on the inhibition of
5-HT3A receptor-mediated responses by cannabidiol. A, time course of the
effect of CBD on the maximal amplitudes of the currents induced by 1 �M
5-HT at 5- (open circles), 10- (closed circles), and 20 (closed triangles)-min
intervals. Data points represent means � S.E.M of five to seven cells.
B, percentage of CBD inhibition on the 5-HT3A receptor-mediated cur-
rents recorded at the end of a 20-min application period was not different
among oocytes stimulated with 5-HT application at 5-, 10-, and 20-min
intervals (ANOVA: P 
 0.05; n � 5–7). C, percentage of controls (recov-
ery) from CBD inhibition of the 5-HT3A receptor-mediated currents re-
corded at the end of a 20-min recovery period was not different between
oocytes stimulated and not stimulated with 5-HT application every 10
min (ANOVA: P 
 0.05; n � 5–7). Duration of CBD application (20 min)
is indicated by the horizontal bar in the figure.
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inhibition; n � 7; Student’s t test: t � �0.63, df � 10, P �

0.54, n � 5–7; Fig. 4D).

In a recent study, it was demonstrated that the magnitude

of inhibition induced by the endocannabinoid anandamide is

inversely correlated with the amount of 5-HT3 receptor cRNA

injected into X. laevis oocytes (Xiong et al., 2008). For this

reason, we compared the effects of CBD on 5-HT3 receptors in

X. laevis oocytes injected with increasing concentrations of

cRNA encoding for this receptor. Increasing the concentra-

tion of 5-HT3 receptor cRNA reversed the inhibitory effect of

CBD at this receptor (Fig. 5A). For example, the maximal

inhibition induced by 1 �M CBD was 81 � 5% (n � 6) in

oocytes injected with 1 ng of 5-HT3A receptor cRNA, whereas

the maximal inhibition was only 11 � 3% (n � 5) in oocytes

injected with 30 ng of 5-HT3A receptor cRNA. These values

were significantly different (Student’s t test: t � �12.8, df �

9, P 	 0.001, n � 5–6; Fig. 5B). The IC50 values of CBD

inhibition differed by nearly 230-fold between oocytes previ-

ously injected with 1 and 30 ng of cRNAs (Fig. 5C); the IC50

values for CBD inhibition were 121 � 11 nM, 587 � 62 nM,

and 29 � 4 �M (means � S.E.M.) in cells injected with 1, 3,

and 30 ng of cRNA, respectively (Student’s t test: t � �7.1,

df � 10, P 	 0.001, n � 5–7; Fig. 5C). Likewise, the magni-

tude of inhibition produced by 1 �M CBD was highly corre-

lated with the amount of the cRNA injected into the oocytes

(r � �0.99; Fig. 5D). As would be expected, the amplitude of

current activated by 1 �M 5-HT also increased with the

amount of cRNA injected (Figs. 5 and 6A), indicating that

the levels of functional receptor expression correlate with the

amount of cRNA expressed in the oocytes. The magnitude of

Fig. 4. Effects of cannabidiol and 5-HT on the specific binding of
[3H]GR65630 and the effect of cannabidiol on 5-HT concentra-
tion-response curves from X. laevis oocytes expressing 5-HT3A

receptors. A, inhibition of specific [3H]GR65630 binding by non-
labeled 5-HT in membranes after 1-h preincubation with 1 �M
cannabidiol. The concentration of [3H]GR65630 was 1 nM. The
inhibition curve shows pooled data from 8 to 11 measurements
from three experiments. B, effects of increasing concentration of
cannabidiol on the specific binding of [3H]GR65630. Experi-
ments were conducted in the presence of 1 nM [3H]GR65630.
The results present data from 9 to 11 measurements. Data
points indicate mean � S.E.M. C, concentration-response curves
for 5-HT-activated current in the absence (open circles) and
presence (closed circles) of 1 �M CBD. Currents were activated
by 5-HT concentrations ranging from 0.1 to 100 �M. Cannabi-
diol was applied for 20 min, and 5-HT and CBD were then
coapplied for 10 to 15 s. Data points are the mean � S.E.M. (n �
4–5); error bars are not visible are smaller than the size of the
symbols. The curve is the best fit of the data to the logistic
equation described in the methods. The control concentration-
response curve is normalized to the maximal response. The CBD
concentration-response curve is the percentage of the maximal
control. D, comparison of the 1 �M CBD effect on the mouse and
human 5-HT3A receptors expressed in oocytes (3 ng/oocyte, re-
corded on postinjection day 3). Bar graph shows average inhibi-
tion (mean � S.E.M.) of 5-HT (1 �M)-induced currents by 20-
min CBD application in five oocytes expressing mouse 5-HT3A

receptors and seven oocytes expressing 5-HT3A receptors.

Fig. 5. Cannabidiol inhibition is inversely correlated with
the amount of 5-HT3A receptor cRNA injected into X. laevis
oocytes. A, current traces demonstrating CBD inhibition of
5-HT-activated currents in cells previously injected with 1
ng (top) and 30 ng (bottom) of 5-HT3A receptor cRNAs.
B, time course of CBD inhibition of maximal currents in-
duced by 1 �M 5-HT in oocytes previously injected with 1,
3, and 30 ng of the 5-HT3A receptor cRNAs. The solid bar
indicates the duration (20 min) of 1 �M CBD application.
Each data point represents mean � S.E.M. from the aver-
age of five to six cells. C, concentration-response curves of
CBD inhibition of 5-HT-activated current in oocytes in-
jected with 1, 3, and 30 ng of 5-HT3A receptor cRNAs. The
curves were best fit to the logistic equation as described
under Materials and Methods. Each data point represents
mean � S.E. from five to seven oocytes. D, correlation
between the magnitude of inhibitory effect induced by 1 �M
CBD and increasing concentrations of 5-HT3A cRNAs in-
jected into oocytes (linear regression, r � �0.99; n � 5–7).
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inhibition produced by 1 �M CBD was also highly correlated

with the mean current density of the receptor (r � �0.96; Fig.

6A). To further confirm the relationship between receptor

expression and CBD inhibition, we pretreated oocytes for

24 h before recordings with 15 �g/ml ActD, which inhibits

RNA transcription. Pretreatment with ActD significantly re-

duced mean current density (activated by 30 �M 5-HT) from

4.9 � 0.6 to 1.6 � 0.4 nA/pF (ANOVA: F1,12 � 25.9, P 	 0.001,

n � 6–8; Fig. 6B, right), suggesting that ActD reduces the

functional expression of 5-HT3A receptors. In contrast, ActD

significantly increased the magnitude of CBD inhibition from

48 � 4 to 81 � 6% (ANOVA: F1,12 � 18.2, P 	 0.002, n � 6–8;

Fig. 6B, left).

Discussion

The results presented indicate that the plant-derived non-

psychoactive cannabinoid CBD inhibits the function of both

mouse and human 5-HT3 receptors expressed in X. laevis

oocytes. The inhibitory effect of CBD on 5-HT-induced cur-

rents was concentration-dependent and related to 5-HT3 re-

ceptor expression. The IC50 values varied from 121 nM to 29

�M in oocytes injected with 1 to 30 ng of cRNA, respectively.

Increasing the concentration of 5-HT did not overcome CBD

inhibition of 5-HT-induced ion currents; i.e., the maximal

amplitudes of 5-HT-induced currents were also inhibited,

suggesting that CBD inhibition is noncompetitive.

CBD is a major nonpsychotropic constituent of C. sativa.

Unlike THC, it is virtually inactive at both CB1 and CB2

receptors (Pertwee, 2009; for review, see Izzo et al., 2009).

CB1 and CB2 receptors are not expressed in X. laevis oocytes

(Hejazi et al., 2006; Oz et al., 2007). Therefore, it is unlikely

that the effect of CBD on 5-HT3 receptors is mediated by the

activation of CB1 or CB2 receptors. CBD analogs such as

abnormal-cannabidiol are reported to activate non-CB1 and

non-CB2 receptor by a PTX-sensitive G protein (Járai et al.,

1999). However, CBD inhibited 5-HT3 receptor function in

PTX-treated oocytes, indicating that the PTX-sensitive re-

ceptors do not mediate the functional interaction of CBD with

the 5-HT3 receptor.

Cannabidiol increases intracellular Ca2� levels in neurons

and glia (Drysdale et al., 2006; Ryan et al., 2006). However,

the magnitude of CBD inhibition of 5-HT3A currents was not

significantly altered by intracellular injection of BAPTA, a

high-affinity Ca2� chelator. Furthermore, during our exper-

iments, application of CBD in the highest concentration of

used (30 �M) in this study, did not modify baseline currents,

indicating that intracellular Ca2� concentration was not af-

fected by CBD. Because Ca2�-activated Cl� channels are

highly sensitive to intracellular levels of Ca2� (for review, see

Dascal, 1987), the release of Ca2� from internal stores of this

ion would be reflected by changes in holding current in volt-

age-clamp conditions. This was not seen. In addition, other

passive membrane properties such as membrane capacitance

and oocyte input resistance were not significantly altered

(Table 1), suggesting that CBD, at the concentrations used in

this study, also did not disrupt the integrity of the lipid

membrane.

CBD suppresses nausea and vomiting in animal models.

In shrews, pretreatments with CBD suppress lithium chlo-

ride-induced vomiting (Parker et al. 2004). In rats, CBD

interferes with nausea elicited by lithium chloride and

with conditioned nausea elicited by a flavor paired with

lithium chloride (Parker et al., 2002). Because CBD does

not activate known CB receptors (Izzo et al., 2009; Pert-

wee, 2009), and the effect of CBD was not reversed by the

CB1 receptor antagonist SR-141617A [N-(piperidin-1-yl)-

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-

pyrazole-3-carboximide hydrochloride], this suppression of

nausea and vomiting does not appear to be linked to activ-

ity of the CB1 or CB2 receptors (Kwiatkowska et al., 2004).

Cannabinoid receptor-independent actions of various can-

nabinoids on the function of 5-HT3 receptors have been dem-

onstrated in several previous investigations (for review, see

Oz, 2006). In previous in vitro electrophysiological studies,

direct effects of the cannabinoid receptor ligands THC, anan-

damide, WIN55,212-2, and CP55,940 on the function of

5-HT3 receptors have been reported in both in vitro (Fan,

1995; Barann et al., 2002; Xiong et al., 2008; Oz et al. 1995,

2002) and in vivo studies (Godlewski et al., 2003; Przegalin-

ski et al., 2005; Racz et al., 2008). Our results provide the

Fig. 6. Cannabidiol inhibition of 5-HT3A receptors is inversely correlated
with the mean current density and ActD treatment-induced decreases in
5-HT-induced currents. A, correlation between the percentage of CBD
inhibition of mean current density (MCD; linear regression, r � �0.96).
B, bar graphs of average amplitude of current induced by maximal
concentration of 5-HT (30 �M) with and without ActD treatment of
X. laevis oocytes expressing mouse 5-HT3A receptors. Each bar represents
mean � S.E.M. from six to eight cells. C, bar graphs represents average
percentage of CBD inhibition of 5-HT3A receptors without and with ActD
treatment. Each bar represents mean � S.E.M. from six to eight cells.
�, P 	 0.05, significant difference compared with control (ANOVA).
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first demonstration that nonpsychotropic phytocannabinoids

such as CBD also modulate the function of 5-HT3 receptors.

Commonly used doses of CBD (3–10 mg/kg) produce brain

levels of 200 nM to 3 �M (Varvel et al., 2006). Therefore,

functional modulation of 5-HT3A receptors demonstrated in

this study (IC50 � 121 and 587 nM for 1- and 3-ng cRNA-

injected oocytes, respectively) can mediate some of the can-

nabinoid receptor-independent actions of CBD. In previous

studies, direct actions of CBD on several integral membrane

proteins, including various subtypes of glycine receptors (Ah-

rens et al., 2009), 5-HT receptors (Russo et al., 2005), opioid

receptors (Kathmann et al., 2006), transient receptor poten-

tial channels (Bisogno et al., 2001; De Petrocellis et al., 2008;

Qin et al., 2008), and T-type Ca2� channels (Ross et al.,

2008), have also been demonstrated (for a recent review, see

Izzo et al., 2009). In addition, anti-inflammatory, analgesic,

and antiepileptic actions of CBD are mediated by mecha-

nisms independent of known cannabinoid receptors (for re-

view, see Izzo et al., 2009).

Open-channel blockade is a widely used model to describe

the block of ligand-gated ion channels. However, this model

cannot account for the results of the present study. First, for

open channel blockers, the presence of the agonist is required

to let the blocker enter the channel after the receptor has

undergone an agonist-induced conformational change to open

the channel. In contrast to open channel blockers, preincu-

bation of CBD caused a further inhibition (Figs. 1A and 3A),

indicating that CBD can interact with the closed state of the

5-HT3A receptor. Second, inhibition by CBD is not voltage-

sensitive, suggesting that the CBD binding site is not

charged and that the site is not within the transmembrane

electric field. Likewise, there was an absence of use-depen-

dent blockade (Fig. 3A), and CBD had little effect when

coadministered with 5-HT without CBD preincubation (data

not shown). Third, recovery from CBD inhibition occurred

independent of agonist application intervals (Fig. 3C), indi-

cating that CBD is not trapped in the channel when the

channel closes, as can occur with open channel blocking

drugs. Finally, CBD did not significantly affect the reversal

potential of 5-HT-induced currents, indicating that current

inhibition is not due to an alteration in the ion selectivity of

the channels.

Allosteric modulators alter the functional properties of li-

gand-gated ion channels by interacting with site(s) that are

topographically distinct from the ligand binding sites (for

review, see Onaran and Costa, 2009). In electrophysiological

studies, although the potency of the 5-HT, a natural ligand

(agonist) for this receptor, was not altered, its efficacy was

significantly inhibited by CBD, indicating that CBD did not

compete with the 5-HT binding site on the receptor. In agree-

ment with these findings, radioligand binding studies indi-

cated that displacement of [3H]GR65630 by 5-HT was not

significantly affected by CBD, further suggesting that CBD

does not interact with 5-HT binding site on the receptor.

These findings indicate that CBD acts as an allosteric mod-

ulator of 5-HT3 receptor. In previous studies, CBD has been

reported to be an allosteric modulator of several structurally

different ion channels (Izzo et al., 2009); i.e., CBD binds to

site(s) topographically distinct from the 5-HT binding sites

on the receptor-ion channel complex. The noncompetitive

property of the allosteric CBD inhibition puts it in an advan-

tageous position, because the increases in concentration of

endogenous agonist (5-HT) in synaptic cleft cannot alter the

efficacy of CBD.

It is likely that CBD, a highly lipophilic agent, first dis-

solves into the lipid membrane and then diffuses into a

nonannular lipid space to inhibit the ion channel-receptor

complex. Consistent with this idea, the effect of CBD on

5-HT3 receptor reached to a maximal level within 10 to 15

min of application time. Likewise, actions of several hydro-

phobic allosteric modulators, such as endocannabinoids (Oz

et al., 2002a; Spivak et al., 2007; Xiong et al., 2008), fatty

acids (Oz et al., 2004c), steroids (Oz et al., 2002b), and gen-

eral anesthetics (Zhang et al., 1997), on ligand-gated ion

channels require 5 to 20 min to reach their maxima (for

review, see Oz, 2006), suggesting that the binding site(s) for

these allosteric modifiers is located inside the lipid mem-

brane and require a relatively slow (in minutes) time course

to modulate the function of the receptor. It is likely that these

hydrophobic agents act as gating modifiers (for review, see

Oz, 2006), affecting the energy requirements for the gating-

related conformational changes in ligand-gated ion channels

(Spivak et al., 2007).

It is interesting that we found an inverse correlation be-

tween the magnitude of CBD inhibition and the amount of

cRNA injected into oocytes. In a recent study, biotinylation

experiments indicated that the increase in the amount of

cRNA injected into X. laevis oocytes enhances the surface

expression of 5-HT3A receptors and attenuates the magni-

tude of anandamide inhibition of 5-HT3A receptor (Xiong et

al., 2008). This phenomenon has been suggested to be due to

the increased tendency of 5-HT3A receptors to desensitize at

low expression levels. Various conditions that decrease the

desensitization of the receptor also attenuate anandamide

inhibition (Xiong et al., 2008). By definition, receptors are

required to be open before their transition into a desensitized

state. However, as mentioned, in the majority of reports, the

effects of highly lipophilic substances, such as cannabinoid

receptor ligands (Barann et al., 2002; Oz et al., 2002a) and

steroids (Oz et al., 2002b), require a long (several seconds)-

lasting exposure time before the opening of the channel by

agonist application (for review, see Oz, 2006). Thus, it ap-

pears that cannabinoids can interact with 5-HT3A receptors

during the closed state and facilitate desensitization during

agonist activation of the receptor.

It is plausible to predict that CBD, similar to the effect of

anandamide on nicotinic acetylcholine receptors (Spivak et

al., 2007), reduces current amplitude by lowering the energy

barrier for receptors to enter a desensitized state. In addi-

tion, 5-HT3A receptor density can contribute to the free-

energy barrier required for conformational changes during a

receptor desensitization process and facilitate the effect of

CBD on the desensitization of 5-HT3A receptor. Clearly, fur-

ther investigations in which receptor kinetics can be studied

in a more detailed and precise manner are required to delin-

eate the mechanisms by which CBD affects 5-HT3A receptor

function.

In conclusion, our results indicate that CBD inhibits the

function of homomerically expressed 5-HT3A receptor by a

noncompetitive (allosteric) mechanism and that the expres-

sion level of 5-HT3A receptors significantly influences the

sensitivity of the receptor to the inhibitory effect of CBD.

These data add to a growing body of evidence (Izzo et al.,
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2009), indicating that cannabinoid-receptor-independent tar-

gets can contribute to pharmacological actions of CBD.
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Riering K, Rewerts C, and Zieglgänsberger W (2004) Analgesic effects of 5-HT3
receptor antagonists. Scand J Rheumatol Suppl 119:19–23.

Ross HR, Napier I, and Connor M (2008) Inhibition of recombinant human T-type
calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem
283:16124–16134.

Russo EB, Burnett A, Hall B, and Parker KK (2005) Agonistic properties of canna-
bidiol at 5-HT1a receptors. Neurochem Res 30:1037–1043.

Ryan D, Drysdale AJ, Pertwee RG, and Platt B (2006) Differential effects of cannabis
extracts and pure plant cannabinoids on hippocampal neurones and glia. Neurosci
Lett 408:236–241.

Scuderi C, Filippis DD, Iuvone T, Blasio A, Steardo A, and Esposito G (2009)
Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.
Phytother Res 23:597–602.

Slatkin NE (2007) Cannabinoids in the treatment of chemotherapy-induced nausea
and vomiting: beyond prevention of acute emesis. J Support Oncol 5:1–9.

Spivak CE, Lupica CR, and Oz M (2007) The endocannabinoid anandamide inhibits
the function of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 72:

1024–1032.
Thompson AJ and Lummis SC (2007) The 5-HT3 receptor as a therapeutic target.

Expert Opin Ther Targets 11:527–540.
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