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Abstract

The discovery of the endocannabinoid system (ECS; comprising of G-protein coupled cannabinoid

1 and 2 receptors, their endogenous lipid ligands or endocannabinoids, and synthetic and

metabolizing enzymes, triggered an avalanche of experimental studies that have implicated the

ECS in a growing number of physiological/pathological functions. They also suggested that

modulating ECS activity holds therapeutic promise for a broad range of diseases, including

neurodegenerative, cardiovascular and inflammatory disorders, obesity/metabolic syndrome,

cachexia, chemotherapy-induced nausea and vomiting, tissue injury and pain, among others.

However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and

other studies with peripherally restricted CB1/2 agonists and inhibitors of the endocannabinoid

metabolizing enzyme in pain introduced unexpected complexities, and suggested that better

understanding of the pathophysiological role of the ECS is required in order to devise clinically

successful treatment strategies, which will be critically reviewed in this brief synopsis.
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Introduction

Although Cannabis sativa (marijuana plant) is one of the most ancient medicinal plants in

the history of medicine[1], the clinical use of synthetic cannabinoids or medicinal plant

extracts have been largely empirical and limited to a few specific indications related to pain,

wasting disorders, and chemotherapy-induced nausea and vomiting, because of their socially

undesirable psychoactive properties[2]. The discovery of endocannabinoids (ECs), which

mimic some of the effects of synthetic cannabinoids in vivo, their G-protein coupled

receptors (GPCR) as well as their synthetic and metabolizing enzymes, has prompted

preclinical studies to explore the role of the ECS in health and disease[2–4]. These studies

have been greatly facilitated by the introduction of mice deficient in cannabinoid receptors

or the EC degrading enzymes, as well as selective cannabinoid receptor ligands and

inhibitors of EC metabolism. The results of these studies have implicated the ECS in a

variety of physiopathological processes, both in the peripheral and central nervous systems

and in various peripheral organs[2]. They further suggested that modulating ECS activity

may have therapeutic potential in almost all diseases affecting humans, including obesity/

metabolic syndrome[5], diabetes and diabetic complications[6], neurodegenerative[7,8],
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inflammatory[9], cardiovascular[10–12], liver[13,14], gastrointestinal[15], skin[16]

diseases, pain[17,18], psychiatric disorders[19,20], cachexia[2], cancer[21,22],

chemotherapy-induced nausea and vomiting[23], among many others[2]).

These investigations have also uncovered the remarkable complexity of the ECS, as

exemplified by differences in the therapeutic profile of activating/inhibiting the same

receptor in the CNS or in peripheral tissues, by the intriguing overlap between EC and

eicosanoid signaling, or by the often opposite effects mediated by CB1 and CB2 receptors in

disease models[2–4,6,24]. Similar complexities have emerged in clinical trials targeting the

ECS. While globally acting (i.e. brain-penetrant) CB1 antagonists/inverse agonists had

therapeutic efficacy in obesity/metabolic syndrome, they elicited anxiety/depression in a

small proportion of subjects, which has led to their withdrawal from the market worldwide

and halted their further therapeutic development[5,25,26]. The first human trial with

peripherally restricted mixed CB1/2 agonist(s) for pain has failed because of cardiovascular

and metabolic side effects and hepatotoxicity[27,28]. Amplifying ECS tone by inhibiting EC

metabolism was ineffective in alleviating osteoarthritic pain in human subjects[29,30]. Thus,

we need to better understand the pathophysiological function of the ECS in humans, and

have to refine the indications and design of clinical trials in order to successfully translate

recent progress in cannabinoid biology into clinically effective treatment strategies.

In this brief synopsis we will discuss preclinical evidence implicating the ECS in human

disease, and review treatment strategies that target the ECS for therapeutic gain in humans.

Because of space limitations, we will often refer readers to recent overviews on specific

subjects instead of original papers.

The endocannabinoid system (ECS)

Δ9-tetrahydrocannabinol (THC), the putative psychoactive ingredient of marijuana, as well

as its endogenous counterparts anandamide (arachidonoyl ethanolamide) and 2-

arachidonoylglycerol (2-AG) exert their primary effects through cannabinoid 1 and 2

(CB1/2) receptors; 2-AG favors CB2, while AEA binds with higher affinity to CB1[2], but at

higher concentrations may also modulate TRPV1 and other receptors. Signaling by

cannabinoid receptors is complex, as it may involve both G protein-dependent pathways,

such as inhibition of adenyl cyclase or modulation of ion channel function, and G protein-

independent mechanisms, including activation of various MAPKs (p44/42MAPKs, p38,

ERK and JNK) or ceramide signaling[2,31,32].

CB1 receptors, the most abundant GPCR in the mammalian brain, mediate the socially

undesirable psychoactive effects of Cannabis. Although their expression was initially

considered to be restricted to the brain, more recent studies identified CB1 receptors in

virtually all peripheral tissues and cell types, albeit at much lower densities than in brain,

and documented their important regulatory functions[2,3,5]. CB2 receptors are largely

restricted to immune and hematopoetic cells, although functionally relevant expression has

been found in specific regions of the brain and in myocardium, gut, endothelial, vascular

smooth muscle and Kupffer cells, exocrine and endocrine pancreas, bone, reproductive

organs/cells, and in various tumors[4]. Both cannabinoid receptors may undergo rapid

internalization and intracellular trafficking upon agonist exposure[33,34].

In the CNS, AEA and 2-AG are synthesized “on demand” and released to act as retrograde

transmitters on CB1 receptors[35–37]. They are not stored and are rapidly degraded after

exerting a transient and localized effect[38]. The synthesis of ECs largely depends on the

intracellular Ca2+-concentration. AEA is mainly formed via a two step-pathway, involving a

Ca2+-dependent N-acyltranferase and N-acylphosphatidylethanolamine-hydrolyzing

phospholipase D (NAPE-PLD), while diacylglycerol lipase and phospholipase Cβ are
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mainly responsible for the biosynthesis of 2-AG[3,37]. The existence of additional, parallel

biosynthetic pathways for AEA has also been proposed[39,40].

AEA and 2-AG are removed from the extracellular space by a process of cellular uptake and

metabolism; however the putative transporter(s) involved have not yet been cloned, and are

subjects of much recent controversy[41–43]. AEA is degraded primarily by fatty acid amide

hydrolase (FAAH) and 2-AG is degraded by monoacylglycerol lipase (MAGL)[3,44],

although additional enzymes have also been implicated in the degradation of both AEA and

2-AG[45,46]. Endocannabinoids may also be metabolized by cyclooxygenases,

lipooxygenases and cytochrome P450, leading to the formation of bioactive metabolites

which may activate CB receptor-independent mechanisms[24,47]. It is also important to

note that FAAH and MAGL are also responsible for the degradation of numerous potentially

bioactive lipids. Thus, the biological consequences of the inhibition of these enzymes are not

necessarily due to enhanced EC levels. Some of the enzymes involved in EC synthesis/

degradation may exist in several forms and their activity may vary in different tissues or

even in different regions of the same tissue[3,37,48–52].

In addition to AEA and 2-AG, several other EC-like molecules have been discovered, but

their activities have not been studied in sufficient detail[53,54]. Interestingly, recent studies

have identified novel peptide allosteric negative modulators of CB1 receptors[55], the

biological significance of which is yet to be determined. Additionally, the anti-inflammatory

lipid lipoxin A4 may be an endogenous allosteric enhancer of CB1 receptors[56]. A

comprehensive overview of the ECS is beyond the scope of this chapter; instead, the reader

is referred to several detailed reviews on this subject[3,24,37,57].

The endocannabinoid system in health and disease

Despite the ubiquitous expression of the various components of the ECS, their genetic

ablation or pharmacological blockade in normal, healthy animals has minimal functional

consequences, which suggests that the ECS has minimal or no tonic activity under normal

physiological conditions[2,4]. On the other hand, an increase or decrease in ECS tone is

associated with various pathological states, as a result of altered expression of CB receptors,

endocannabinoid metabolizing enzymes and/or synthetic pathways, in a tissue-specific and

time-dependent manner. Examples of selected pathologies in which dysregulation of the

ECS was reported (in most cases upregulation of CB1/2 and/or increase in tissue levels of

ECs) are shown in table 1, and have been summarized in more detail elsewhere[2–4,58,59].

In some cases, altered ECS activity is transient and forms part of the body’s compensatory

response to a particular insult, thus reducing symptoms and/or slowing progression of the

disease (e.g. in neuropathic pain); in other cases, activation of the ECS may be pathogenic

(e.g. in various forms of shock or diabetic complications) or may reflect a deficiency (e.g. in

various tumors), the significance of which is yet to be determined[2].

From a therapeutic standpoint, identification of regional or tissue-specific changes in CB

receptors is important, because of their possible selective targeting may mitigate unwanted

side effects [59,60]. However, these changes can serve as a basis of successful drug

development only as long as they are determined using appropriate tools (e.g. specific

antibodies), the specificity of which needs to be carefully validated[4,61]. It is also very

important to understand the underlying mechanisms of these alterations; for example, is the

increase in the tissue level of an EC due to its increased biosynthesis or a decrease in its

enzymatic degradation?
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Cardiovascular consequences of targeting the ECS in health and disease

Since many promising drugs fail in clinical development because of cardiovascular side

effects, it is important to briefly overview the cardiovascular consequences of modulating

the ECS. ECs exert complex cardiovascular effects dominated by a decrease in blood

pressure and myocardial contractility, mediated primarily by CB1 receptors located in the

myocardium, vasculature, and neurons in the central and autonomic nervous systems[2,62].

In cultured human coronary artery endothelial cells[63] and cardiomyocytes[64], CB1

activation promotes stress signaling and cell death, and decreases contractility [10,12]. In

contrast, activation of cardiovascular CB2 receptors does not have adverse hemodynamic

consequences[11]. CB1, CB2 or FAAH knockout mice have normal blood pressure,

myocardial contractility and/or baroreflex sensitivity, indicating the minimal role of the ECS

in normal cardiovascular regulation[2]. However, in several pathological conditions (e.g.

shock, heart failure, cardiomyopathies, advanced liver cirrhosis) the ECS may become

activated to promote hypotension/cardiodepression through cardiovascular CB1

receptors[2,10]). CB1 receptor signaling may also promote disease progression in preclinical

models of heart failure[64–66] and atherosclerosis[67,68], and contributes to increased

cardiovascular risk (e.g. plasma lipid alterations, abdominal obesity, hepatic steatosis,

insulin and leptin resistance) in obesity/metabolic syndrome and diabetes, both in rodents

and humans[5,69–71]. In contrast, CB2 signaling in the heart and vasculature may activate

cardioprotective mechanisms and limit inflammation[11].

Acute or chronic use of marijuana may decrease or increase heart rate and decrease blood

pressure depending on the duration of the use, dose and route of administration[2,10].

Elevated resting heart rate is a known independent risk factor for cardiovascular disease in

healthy men and women[72]. A recent controlled study at the National Institute on Drug

Abuse evaluated the development of tolerance to the effects of oral synthetic THC in 13

healthy male daily cannabis smokers residing on a secure research unit over a period of 6

days[73]. Despite the development of tolerance to the subjective intoxicating effect of THC,

no tolerance was observed to its hypotensive and tachycardic effects[73]. Another recent

study of 72 young cannabis user men and 72 matched controls found increased heart rate

variability in cannabis users[74]. Surinabant, a selective CB1 antagonist, has recently been

reported to inhibit THC-induced central nervous system and heart rate effects in humans,

providing proof of principle that those effects were indeed mediated by CB1 receptor

activation[75]. At the 20th ICRS meeting in Sweden, AstraZeneca presented data from the

first clinical studies with two novel, peripherally restricted, orally active mixed CB1/2

agonists (AZD1940 & AZD1704). The study was terminated due to adverse cardiovascular

effects, weight gain and mild hepatotoxicity[27,28].

An increasing number of case reports associates marijuana smoking with precipitation of

acute coronary syndrome (ACS)[76]. Alarmingly, this occurs mostly in young healthy

subjects without any prior cardiovascular disease[77,78]. A retrospective study assessed the

risk of ACS after exposure to marijuana smoke. It was found that the risk of myocardial

infarction was highest during the first hour of exposure[79]. The effect of marijuana use on

mortality following acute myocardial infarction was assessed in a prospective study

involving 1913 adults hospitalized with myocardial infarction at 45 US hospitals between

1989 and 1994, with a median follow-up of 3.8 years. The results indicated that marijuana

use may pose increased risk of infarction in susceptible individuals with coronary heart

disease[80]. A more recent study evaluated the consequences of marijuana use and long-

term mortality among survivors of acute myocardial infarction, and found that habitual

marijuana use among patients presenting with acute MI was associated with an apparent

increase in mortality rate (29% higher) over the following 18 years, though this did not

reach statistical significance because of the limited sample size[81]. In the absence of large
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scale, long term controlled studies with repeated measures of marijuana use, a firm

conclusion on the long term impact of cannabis use on cardiovascular mortality cannot be

drawn. Nevertheless, the above findings are of concern. Because THC is a relatively weak

CB1 agonist compared to many synthetic ligands, also activates cardioprotective CB2

receptors and is a potent antioxidant, one may predict that the uncontrolled spread and use of

mixtures of potent synthetic CB1 agonists (spice, K2, etc.) used as recreational drugs, would

lead to significantly greater cardiovascular morbidity. Indeed, in a recent case series in

healthy children, myocardial infarction was precipitated by synthetic cannabinoid use[82],

and another paper reported tachycardia, loss of consciousness and diffuse pain in two

adolescents[83].

What is the situation regarding the ECS and cardiovascular pathology? As mentioned

before, EC/CB1 receptor signaling has been implicated as a pathogenic factor in rodent

models of cardiovascular diseases, including atherosclerosis, shock and various forms of

cardiomyopathy. However, ECs were also reported to exert protective effects, based mostly

on ex vivo and indirect studies, via CB2 and CB-receptor independent mechanisms. Clearly,

selective CB2 agonists exert beneficial effects in rodent models of myocardial infarction by

limiting inflammatory cell infiltration (in cardiomyocytes the expression of CB2 is very low,

if any)[11]. To analyze the role of the ECS more directly, a recent study employed FAAH

knockout mice with a 2.5–3-fold increase in myocardial AEA content. When such mice

were used to induce various experimental models of cardiomyopathy, they displayed

increased mortality, tissue injury and neutrophil infiltration in the heart, which could be

partially rescued by CB1 antagonists[66]. Consistently with this report, a recent study

showed that FAAH deficiency enhanced intraplaque neutrophil recruitment in

atherosclerotic mice and increased a proinflammatory immune response[84]. These findings

indicate that the primary cardiovascular effects of elevated EC tone are deletorious and are

mediated by CB1 receptors.

In obese human subjects, increased plasma levels of AEA and 2-AG were strongly

associated with coronary circulatory dysfunction, suggesting that plasma EC levels may be

used as biomarkers of cardiovascular risk in obesity[85]. In another study, increased plasma

AEA and 2-AG levels positively correlated with impaired coronary endothelial function in

obese subjects[86]. In samples of epicardial fat from ischemic human hearts, upregulation of

CB1 was accompanied by downregulation of CB2 and FAAH, compared to non-ischemic

hearts[87]. CB1 receptor density was significantly higher in atherosclerotic coronary artery

sections from patients with unstable angina compared to those with stable angina[67].

G1359A polymorphism in the CB1 receptor gene was also associated with coronary artery

disease in the Chinese Han population, although the effect of this polymorphism on receptor

function is unknown[88]. Both ECs were reported to inhibit human cardiac Kv4.3 channels

at fairly low concentrations in ovary cells expressing Kv4.3 or in human cardiomyocytes in

a receptor independent manner[89], a harbinger of pro-arrhythmic risk.

Thus it is clear that activation of CB1 receptors by synthetic ligands or ECs is associated

with adverse cardiovascular consequences, which must be very carefully weighed during

preclinical/clinical development of new drugs targeting the ECS.

Activation of CB1/2 receptors: THC, synthetic agonists and cannabinoid

extracts

THC (Dronabinol; Marinol) and its synthetic analogue Nabilone (Cesamet) have been

approved by the FDA for treatment of chemotherapy-induced nausea and vomiting and for

stimulating appetite in wasting disorders (e.g. AIDS, tumor cachexia, etc). Sativex, an

oromucosal spray containing THC and the non-psychoactive plant cannabinoid, cannabidiol,
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has recently been approved in Canada, the UK and several other European countries for the

symptomatic relief of neuropathic pain and spasticity associated with multiple sclerosis, and

as adjunctive analgesic treatment for adults with advanced cancer. However, the therapeutic

utility of THC and its synthetic analogs are limited by their unwanted psychotropic effects

mediated by central CB1 receptors. Here, we will summarize only the clinically most

relevant indications.

Earlier preclinical studies suggested that ECs or plant-derived cannabinoids exert

neuroprotective effects in the CNS by: 1) modulating excitability and calcium homeostasis

via effects on various ion channels (Ca2+, Na+, K+), intracellular Ca2+ stores and gap

junctions and N-methyl d-aspartate (NMDA) receptors; 2) attenuating excitatory

glutamatergic transmissions and modulating synaptic plasticity via presynaptic CB1

receptors; 3) inducing CB1 receptor-mediated hypothermia; 4) exerting antioxidant effects;

5) modulating immune responses and the release of pro-inflammatory mediators by CB1,

CB2, and non CB1/CB2 receptors on microglia, astrocytes, macrophages, neutrophils,

lymphocytes and neurons[2]. Numerous recent studies have suggested that many of the

previously described protective effects of synthetic CB1 ligands were in fact attributable to

centrally-mediated hypothermia and/or receptor-independent antioxidant/anti-inflammatory

effects of the compounds, and ECs through the activation of CB1 receptors may also

promote tissue injury and neurodegeneration (for example in stroke and other forms of I/R

injury)[6,90–92].

Historical documents reveal that one of the earliest uses of cannabis was to treat pain [93].

Studies in modern times initially focused on CB1 receptors and demonstrated beneficial

effects of cannabinoids in rodent models of acute and chronic pain. The results suggested

that the observed antinociceptive effects have complex mechanisms involving actions in the

CNS, spinal cord, and peripheral sensory nerves[2,94]. Recent evidence also implicates CB2

receptors in the antihyperalgesic activity of cannabinoids[95,96], however the exact

mechanisms and cellular targets are elusive because of the lack of reliable antibodies for

CB2[4].

In humans, the analgesic activity of THC and other cannabinoids is less clear-cut, as

cannabinoids are relatively weak analgesics compared to opiates, even when they do show

efficacy[2]. The clinical data on THC, CBD and their combinations have been

comprehensively reviewed elsewhere[97,98]. The primary focus of these studies has been

the safety/efficacy and symptom relief (e.g. bladder incontinence, limb spasticity, pain and

sleep quality) in multiple sclerosis (MS) or other pain-related conditions. Three studies

demonstrated that cannabis extract in MS patients improved urinary incontinence[98]. A

number of controlled and blinded trials evaluating the efficacy of oral or sublingual

cannabis/Sativex on spasticity in MS found that at doses that lack overt psychoactivity, these

drugs show no or minimal efficacy, as assessed by the objective outcomes using the

Ashworth Scale. However, the treatment consistently improved subjective, patient-assessed

endpoints (spasms, pain, spasticity, sleep quality). Follow-up studies using a patient assessed

Numeric Rating Scale for spasticity showed significant benefits of Sativex compared to

placebo[98]. One could argue that some of the benefits observed could be due mood

improvement (patients feel subjective improvement), but since only some of the symptoms

were improved (spasticity, pain and sleep quality), this may not be the case. In patients

treated with THC for one year, improvements using the Ashworth Scale were reported[98].

Zhornitsky and Potvin meta-analyzed the data of 33 studies with cannabidiol alone or in

various combinations with THC, the rationale for combining THC and CBD being to

attenuate the psychoactive effects of THC by CBD, based on empirical evidence obtained in

some studies. Among these studies, 16 had been conducted in healthy subjects and 17 in

clinical populations, including 4 in MS, 3 in neuropathic and cancer pain, 4 in schizophrenia
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and bipolar mania, 2 in social anxiety disorder, and one each in cancer-related anorexia,

Huntington’s disease, insomnia, and epilepsy [97]. The authors concluded that depending on

the study and on the THC/CBD ratio, CBD may prolong/intensify or inhibit THC-induced

effects. In some of these studies THC or CBD+THC was more effective in reducing pain,

but in others CBD alone also exerted (or completely lacked) analgesic properties. Notably,

several of these studies used multiple pain assessment scores, and the treatments were

effective when evaluated by some, but not by other scales[97]. In one of the studies in which

oral administration of CBD+THC in MS was not effective in improving symptoms,

immunological analysis surprisingly revealed a certain pro-inflammatory effect of the

drug[97]. The authors also concluded that preliminary clinical evidence suggests that high-

dose oral CBD may have therapeutic benefits in social anxiety disorder, insomnia and

epilepsy, but may also cause mental sedation[97].

Taken together, the above mentioned studies in MS show consistent improvements in

subjective rather than quantitative symptomatic outcome measures (including pain), which

supports the beneficial effects of cannabinoid based medicines in neuropathic pain

associated with MS. The relatively poor efficacy observed in some clinical studies may be

attributable to pharmacokinetic problems such as first pass effects via liver and slow

absorption via the oral route of administration, which may also limit the success of self-

titration[98]. In most of these studies, formulations containing THC frequently caused

generally mild to moderate side effects. However, with individual dose-titration, which can

be better achieved by using the oromucosal Sativex spray, side effects can be further

attenuated. Initial dose-titration may also help in select responders and excluding non-

responders early. Future clinical studies should explore how cannabinoid-based medicines

affect MS progression. In light of the preclinical data, the combination of THC with CBD

appears to be the most promising, given the neuroprotective effects of CBD observed in

numerous preclinical studies[99].

There is considerable interest in developing THC-based medicines for other forms of pain,

such as pain associated with cancer or diabetic neuropathy. However, under these conditions

we should also carefully weigh the potential effect of the treatment on cancer and/or

diabetes progression. Regarding cancer, although numerous studies suggest that THC may

slow down the growth/progression of certain types of cancers in preclinical models, others

suggest that THC may in fact promote cancer growth, and cannabinoid receptor deletion or

inhibition is beneficial[2,4,22]. In addition, results of a clinical study evaluating the

association between ECS activity and survival and pain in pancreatic cancer indicate that

although patients with high CB1 receptor expression in enlarged nerves in pancreatic ductal

adenocarcinoma had a lower combined pain score (intensity, frequency, duration), they had

significantly shorter survival[100]. For CBD, the evidence more clearly suggests potential

benefits in multiple preclinical tumor models[99]. In the case of diabetes and diabetic

complications, there is strong evidence (both preclinical and clinical) that CB1 activation

promotes primary diabetes and also contributes to all diabetic complications (including

neuropathy), and CB1 antagonists can prevent or reverse these changes as well as insulin

resistance[6,69,101].

Interestingly, analysis of cross-sectional data from the National Health and Nutrition

Examination Survey (NHANES III, 1988–1994) indicated that marijuana use was

independently associated with a lower prevalence of diabetes mellitus [102], and glucose

tolerance and insulin sensitivity were found unchaged in chronic marijuana smokers [103].

In view of the demonstrated ability of acute marijuana smoking to induce insulin

resistance[104], these findings may reflect desensitization of peripheral CB1 receptors in

chronic users. Further clinical studies are needed to analyze the differential mechanisms

involved in the acute and chronic effects of marijuana use on glycemic control.
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Nevertheless, in light of the overwhelming preclinical and clinical evidence suggesting that

CB1 receptor activation contributes to diabetes development and its complications

(cardiovascular, neuropathy, retinopathy, and nephropathy)[6], and a recent study by

Centers for Disease Control and Prevention (CDC) associating cases of acute kidney injury

with synthetic cannabinoid use [105], the use of THC would be risky from a clinical point of

view in patients with established diabetes. Diabetic patients also have impaired immune

functions and wound healing, which could be adversely affected by immunosuppressive/

immunomodulatory drugs such as THC. In contrast, CBD demonstrated beneficial effects

due to its anti-inflammatory and antioxidant properties both in preclinical models of primary

diabetes and in models of all major diabetic complications, which is encouraging for its

potential testing in diabetic patients[6].

As mentioned above, THC and its synthetic analogue Nabilone are used to treat

chemotherapy-induced nausea and vomiting and to stimulate appetite in cachexia associated

with AIDS or terminal tumors[2]. In case of AIDS, recent controlled studies in non-human

primates showed unexpectedly that chronic THC administration prior to and during simian

immunodeficiency virus infection ameliorates disease progression, attenuates viral load and

tissue inflammation, significantly reducing morbidity and mortality of virus-infected

macaques[106], which is very encouraging.

There is considerable preclinical and clinical evidence that the combination of THC with

opioids or non-steroidal anti-inflammatory drugs may enhance their efficacy in pain and also

limit their side effects,[2,95,96]. Recently, it has become clear that cannabinoid analgesia is

predominantly mediated via peripheral CB1 receptors in nociceptors[107], providing the

rationale for selectively targeting peripheral CB1 receptors by peripherally restricted (brain

impermeable) agonists, thereby eliminating the undesirable CNS consequences of CB1

stimulation[71]. Astra Zeneca developed 2 novel peripherally restricted, orally bioavailable

CB1/2 agonists (AZD1940 & AZD1704). Despite their mixed agonist activity at CB1 and

CB2 receptors, analgesic efficacy in rodent models was mainly driven by CB1 receptors,

validated through the use of CB1 selective antagonist and knockout mice[27]. The clinical

efficacy of AZD1940 as a pain reliever was tested in two single-dose, phase II studies

(human capsaicin and 3rd molar extraction models) and in a multiple ascending doses

(MAD) study performed in subjects with chronic low-back pain. The 2 single-dose, phase II

studies showed no efficacy at the primary endpoints (pain intensity and heat pain threshold

for capsaicin study)[28]. In the multiple ascending dose study where AZD1940 was

administered for 12 days, repeated dosing led to slow compound accumulation, significant

weight gain and elevation of hepatic transaminases. AZD1704 also induced profound

hypotensive effects[28]. Thus, the analgesic efficacy of peripherally restricted CB1 agonists

remains to be established in humans. Whereas their cardiovascular and metabolic side

effects confirm the role of CB1 receptors in these functions in humans, they further limit

their usefulness as therapeutic agents. Whereas the above studies of Astra Zeneca with

novel, peripherally restricted, orally bioavailable CB1/2 agonists did not indicate CB2

involvement in preclinical models of analgesia, other studies suggest that CB2 activation

may attenuate certain types of pain[95,96]. CB2-selective peripherally restricted agonists

(instead of mixed CB1/2 agonists) may offer better optimization of dosing in humans, as

metabolic and cardiovascular side effects are less likely to occur.

Inhibition of the CB1 receptors: global and peripherally restricted CB1

antagonists

Recent preclinical studies provided compelling evidence that ECs modulate food intake,

energy balance, glucose and lipid metabolism through CB1 receptors expressed in the brain

and various peripheral tissues, such as fat, liver, and skeletal muscle[5,70,108,109].
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Treatment with brain-penetrant CB1 receptor antagonists/inverse agonists resulted in

improvements of multiple cardiovascular risk factors both in preclinical studies and in

clinical trials in obese/overweight subjects[110–116]. Parallel preclinical studies clearly

demonstrated that reduced food intake was not the primary mechanism responsible for the

weight reducing effect of CB1 antagonists, and suggested that peripheral energy metabolism

might be directly under EC control[5]. These studies demonstrated that ECs promote

lipogenesis in adipose tissue and liver, but inhibit fatty acid oxidation and mitochondrial

biogenesis, while CB1 antagonists exert opposite effects[5]. Meanwhile, clinical trials

revealed that a small but statistically significant fraction of subjects treated with the CB1

inverse agonist rimonabant exhibited anxiety, depression and/or suicidal ideations,

eventually leading to withdrawal of rimonabant from the market in over 50 countries and

discontinuation of the therapeutic development of this class of compounds[117].

By that time, several lines of evidence strongly suggested that selective inhibition of

peripheral CB1 receptors may preserve much of the metabolic benefit of global CB1

blockade while minimizing side effects due to blockade of CB1 receptors in the CNS[5]. A

proof of principle study by Tam et al.[118] demonstrated that chronic treatment of DIO mice

with AM6545, the first high affinity, selective, peripherally restricted neutral CB1

antagonist, improved glucose tolerance, insulin sensitivity, plasma lipid profile, and also

reversed fatty liver, but was less effective than its parent compound rimonabant in reducing

body weight, as it did not affect caloric intake. This study also provided evidence for the

importance of CB1 receptors in hepatocytes in the development of diet-induced insulin

resistance. A subsequent study provided additional mechanistic insight by demonstrating

that CB1-mediated hepatic insulin resistance involves ER stress-dependent impairment of

insulin signaling as well as reduced insulin clearance[119]. In a follow-up study a highly

potent, selective, and brain impermeable CB1 receptor inverse agonist, JD5037, was even

more effective in improving metabolic parameters in mouse models of obesity, and it not

only improved cardiometabolic risk but had antiobesity and hypophagic effects by reversing

leptin resistance[101]. This compound is currently undergoing toxicology screening as a

prelude to its clinical testing.

As discussed above, we have learned important lessons from the first clinical trials aiming to

attenuate pain with the peripherally restricted mixed CB1/2 agonists, which were terminated

because of the excessive weight gain, hepatotoxicity, and cardiovascular adverse effects.

Interestingly, this side effect profile strongly supports the rationale for the development and

therapeutic use of peripherally restricted CB1 antagonists in humans[27,28].

Activation of CB2 receptors by selective agonists

Overwhelming evidence for the therapeutic potential of EC/CB2 receptor signaling in some

of the major pathologies affecting humans have been reviewed recently[4]. An important

consideration for the therapeutic development of selective CB2 receptor agonists is the

absence of psychoactive effects, coupled with anti-inflammatory and tissue protective

activity of these ligands in numerous preclinical disease models[4].

CB2 receptors are predominantly expressed in peripheral blood immune cells where the

level of their expression is strongly modulated by pro-inflammatory and other stimuli,

largely depending on the experimental conditions[120]. Initial studies focusing on the

immunomodulatory effects of THC and other cannabinoid ligands in vivo in rodents and in

vitro in human immune cell cultures demonstrated immunosuppressive effects in T and B

lymphocytes, NK cells and macrophages, and most likely involved both CB1 and CB2

receptors as well as CB receptor-independent mechanisms[9,120,121]. ECs were also found

to modulate T and B cell proliferation and apoptosis, immune cell activation and
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inflammatory cytokine production, chemotaxis and inflammatory cell migration, and

macrophage-mediated killing of sensitized cells[9,120,122]. These generally inhibitory

effects were ligand- and cell type-dependent and were also influenced by the experimental

conditions used[9,120,123,124]. A complicating factor is the agonist-induced rapid

internalization and trafficking of CB2 receptors in vitro, which can confound the

interpretation of results[33,34]. The effects of ECs or synthetic analogs on microglia

activation/migration also appear to be largely experimental condition-dependent[123].

An important recent development has been the identification of low levels of CB2 receptor

expression in tissues previously thought to be devoid of these receptors. These include

specific regions of the brain[125–127], spinal cord and dorsal root ganglia[17,95,128],

neurons in the myenteric and submucosal plexus of the enteric nervous system[129–131], in

myocardium or cardiomyocytes[64,65,132], human vascular smooth muscle and

endothelium[25,133–135], activated hepatic stellate cells[136,137], Kupffer cells[138], in

reproductive organs/cells[139,140], colonic epithelial cells[141], bone[142–144], mouse and

human exocrine and endocrine pancreas[145–148], and in various human tumors[149].

Further studies are needed to fully explore the function of CB2 receptors at these sites.

More importantly, disease-induced changes – usually increases - in CB2 receptor expression

have been reported (Table 1), and synthetic CB2 receptor agonists exerted protective effects

in a variety of preclinical disease models and pathological conditions[4], ranging from

cardiovascular disorders[11], various forms of ischemic-reperfusion injury[90],

gastrointestinal and liver inflammation[13,150,151], autoimmune and neurodegenerative

disorders[7,152–154], kidney[4] and bone disorders[143,144], cancer[149,155–157], and

pain[17,95].

As for the therapeutic potential of CB2 agonists, it is important to point out that while under

conditions of a sterile inflammatory response CB2 agonists may limit injury, in pathogen-

induced inflammation the immunosuppressive effects of the CB2 receptor activation may

enhance or even inflict tissue damage, and may also lead to accelerated cancer growth in

certain types of tumors, as reviewed recently[4]. In order to successfully target CB2 in

selected human diseases it is imperative to identify the exact cellular location and disease-

induced, time-dependent changes in the expression of CB2 receptors. This will necessitate

the development of improved research tools, such as more reliable and specific antibodies.

This is particularly important, because in many injury models CB2 agonists appear to be

most effective when given before the initiation of the insult, and may lose their efficacy or

even promote inflammation when given at later time points[4]. Thus, a better understanding

of the underlying pathology and its effects on CB2 expression is required for the

development of meaningful therapeutic approaches. Before going to clinical development

for a particular indication, it is also important to confirm previous preclinical findings with

novel and more selective CB2 agonists, since currently available ligands may not be entirely

specific. Better knowledge of the pharmacokinetics and metabolism of ligands is also

essential, particularly given the bell-shaped dose-response often seen with recently available

CB2 agonists in various disease models[4]. The reason for the latter may be that, when used

at higher doses, currently used CB2 agonists may also activate CB1 receptors, particularly

when the relative expression of CB1 over CB2 is high. Our understanding of the

complexities of CB2 receptor signaling is still limited, and one must also consider important

interspecies differences in CB2 receptor signaling and in the pharmacology of CB2

ligands[158].

Problems with the use of peripherally restricted CB1/2 agonists for pain relief due to

cardiovascular and metabolic side effects have been discussed above. A plausible alternative

could be the testing of peripherally restricted selective CB2 agonists for analgesia in
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humans, as such compounds would be expected to be devoid of cardiometabolic liabilities.

However, the preclinical data with AZD1940 & AZD1704 indicate that the analgesic

efficacy of this class of compounds was mainly driven by the CB1 receptor[27] which, if

confirmed in humans, would limit the promise of this approach. Nevertheless, the

therapeutic development of selective CB2 receptor ligands (agonists or inverse agonists/

antagonists depending on the pathology and its stage) is still a promising strategy for a

number of disease conditions, provided the issues discussed above are successfully

resolved[4].

Inhibition of EC metabolism, cellular uptake or biosyntheses

The hypothesis behind the therapeutic inhibition of EC degradation was that increasing EC

tissue levels would be less likely to cause psychoactive effects than would the use of

synthetic CB1 ligands (endocannabinoids are biosynthesized and degraded in a site and

time-dependent manner), while the beneficial effects of CB1/2 activation, such as analgesia,

would be maintained[159]. In support of this, FAAH knockout mice or mice treated with a

FAAH inhibitor have elevated AEA levels in the brain and other tissues, are supersensitive

to exogenous AEA and exhibit CB1 receptor-mediated hypoalgesia[160,161] and reduced

anxiety, but do not display catalepsy, a marker for psychoactivity in humans[162]. The

antinociceptive effect of FAAH inhibitors, likely mediated through increases in AEA and

PEA levels which activate CB1/2, PPARα, and/or TRPV1 [163], was investigated in acute

and chronic rodent models of pain[164]. Most of the initial results were based on using

URB597, which irreversibly inhibit FAAH both in the CNS and a periphery[164]. Recent

studies with a peripherally restricted FAAH inhibitor, URB937, showed efficacy in

neuropathic and inflammatory pain[165], confirming that the analgesic effects of AEA are

initiated at the peripheral sites[107]. However, similar to direct acting peripheral CB1/2

agonists, URB597 has both hypotensive[166] and diabetogenic effects[167] mediated by

CB1 receptors, and FAAH knockout mice are also prone to diet-induced obesity and

diabetes[168]. The diabetogenic effect of URB597 has been attributed to blocking FAAH in

the liver, and the novel FAAH inhibitor AM3506, which does not block FAAH in the liver

due to its rapid uptake and metabolism by hepatocytes, was found to be devoid of glycemic

side effects in rodents[167]. FAAH antagonism may also promote fat accumulation and

insulin resistance through centrally mediated hypothyroidism[169].

The analgesic effects of FAAH inhibition in preclinical models prompted the development

PF-04457845, an irreversible FAAH inhibitor with excellent analgesic efficacy in animal

models[29,170], which was selected for clinical development. In a randomised, placebo-

controlled, phase II clinical trial PF-04457845 was recently evaluated in patients with

osteoarthritic pain of the knee[30]. The results clearly demonstrated that PF-04457845

inhibited FAAH activity in white blood cells and raised the concentrations of various fatty

acid amides 3.5–10 fold, which persisted for up to 2 weeks after discontinuation of the drug,

and did not affect cognitive functions in test subjects. However, the study failed to show any

analgesic efficacy of PF-04457845, while the NSAID naproxen, used as positive control,

was effective[30]. These results were also highlighted and discussed in a recent

editorial[171].

A promising alternative indication for the therapeutic use of FAAH antagonists is post-

traumatic stress syndrome (PTSD). The FAAH inhibitor AM3506 was recently found

effective in increasing fear extinction in a CB1 receptor-dependent manner in a mouse model

of PTSD, and human carriers of a low-expressing FAAH variant displayed quicker

habituation of amygdala reactivity to threat, as detected by brain imaging[172].
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The main rationale for the development of MAGL inhibitors, which metabolize 2-AG, is

similar to the rationale for FAAH inhibitors. Numerous recent studies demonstrated that

MAGL inhibition or genetic deletion exerts antiemetic[173], antineoplastic[174], and

anxiolytic and antinociceptive effects in rodents[175], protects against brain

injury[176,177], acute liver injury/inflammation[138] and colitis either via enhancing CB1/2

signaling or by attenuating eicosanoid synthesis in specific tissues, such as the brain and the

liver[178], or by the combination of both. In case of cancer, MAGL inhibition modulates

fatty acid release for the synthesis of protumorigenic signaling lipids[174]), as reviewed

recently[179,180].

While the above preclinical findings are indeed exciting, they also highlight important

limitations. 1) Raising the tissue levels of ECs may promote the formation of

cyclooxygenase-, lipoxygenase- and cytochrome P450-derived pro-inflammatory

metabolites[47,181]. 2) Some of the prostaglandins which were attenuated by MAGL

inhibitors have well documented tissue protective functions. 3) While the dual effect of

MAGL inhibition on attenuating eicosanoid and enhancing EC signaling can be beneficial in

certain tissues (e.g. brain and liver) where MAGL links the EC and eicosanoid systems

through hydrolysis of 2-AG, in other tissues it can promote inflammation and injury (e.g. in

the myocardium) through the non-CB mechanisms described above (the cardiotoxicity of

COX-2 inhibitors is well documented in humans). 4) Chronic MAGL inhibition leads to

functional antagonism of the ECS[175]. 5) As previously discussed, very strong preclinical

and clinical evidence suggests that in cardiovascular disease and diabetes/diabetic

complications endocannabinoids through CB1 and most likely through the first two

mechanisms described above promote cardiovascular injury. 6) There is growing evidence

that ECs exert proinflammatory effects in various disease models through both CB1-

dependent and -independent mechanisms[6]. This is supported by a recent study

demonstrating that inhibition of EC synthesis is anti-inflammatory in macrophages[182]; 7)

Various isoforms of metabolizing enzymes (e.g. FAAH) may have distinct functions[52],

and the functional properties of rodent and human FAAH may also be different[183]. 8)

Most of the benefits observed with inhibitors of FAAH or MAGL were reported in acute

models; the safety of chronic inhibition of these enzymes has not yet been determined,

particularly in pathological situations. 9) The use of irreversible inhibitors of FAAH and

MAGL could be a disadvantage for accurate dose titration and would make it difficult to

treat toxicity[164].

Conclusions and future directions

Recent clinical studies provided evidence that cannabinoid based medicines with controlled

doses of plant derived cannabinoids can provide symptomatic relief in a subset of patients

suffering from pain and spasticity associated with MS and certain other types of pain, and

there is hope based on preclinical studies that these medications would also positively

modulate disease progression. Synthetic cannabinoids are also useful in subset of patients

with wasting disorders and chemotherapy-induced nausea and vomiting. There are numerous

promising new targets (plant-derived cannabinoids, peripherally restricted CB1 antagonists,

selective CB2 agonists, inhibitors of endocannabinoid metabolism/transport) “in waiting”

which have been reviewed here. However, it is clear that for the successful translation of

preclinical findings to clinical practice, better understanding of the pathological role of the

ECS in various diseases, of potential side effects of targeting this system, and of

endocannabinoid pharmacology is required, coupled with the development of improved

research tools to dissect these processes (see also Figure 1 and Table 2).

Future studies should focus on rigorous evaluation of the CB receptor dependent/

independent, and hypothermia-independent effects of THC in preclinical models (e.g. in
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tissue injury, cancer, inflammation, etc.) using global and tissue/cell specific knockout mice

and to identify potential novel targets/mechanisms of action of THC and other plant derived

cannabinoid, coupled with identification of non-psychoactive constituents in cannabis

extracts with potential therapeutic effects. Novel highly selective, orally available non-toxic

cannabinoid ligands should be developed and evaluated in preclinical disease models. Large

animal studies (e.g. canine, pig, primate) should confirm the efficacy of cannabinoid ligands

obtained in rodent disease models before initiating human trials. Development of specific

novel antibodies for CB1/2 receptors and endocannabinoid metabolic enzymes (FAAH,

MAGL, DAGLα/β) validated by using positive and negative controls is essential to

accurately assess the time-dependent changes in CB1/2 receptors and metabolic enzyme

expressions in diseased animal and human tissues, in order to understand the human

relevance of these changes. Our limited knowledge should be expanded in understanding the

CB1/2 receptor trafficking, signaling and their interspecies differences. Development of

reliable radio-ligands suitable for human imaging studies and research could contribute to

our better understanding the role of ECS in human health and disease.
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List of abbreviations

2-AG 2-arachidonoylglycerol

AEA anandamide or arachidonoyl ethanolamide

CB1/2 cannabinoid receptor 1 or 2

CBD cannabidiol

EC(s) endocannabinoid(s)

ECS the endocannabinoid system

FAAH fatty acid amide hydrolase

GPCR G-protein coupled receptor

MAGL monoacylglycerol lipase

MAPKs mitogen-activated protein kinases

NAPE-PLD N-acyltranferase and N-acylphosphatidylethanolamine-hydrolyzing

phospholipase D

PPARα peroxisome proliferator-activated receptorα

THC Δ9-tetrahydrocannabinol

TRPV1 transient receptor potential cation channel subfamily V member 1
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Figure 1.
Cannabinoid therapeutics: finding the right balance
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Table 1

Examples of the dysregulation of the ECS in disease

Disease, sample (R:
rodent; P: pig; C:
canine; H: human)

Expression/changes in CB1/2 Changes in endocannabinoid
levels

Proposed role of
CB receptors in
disease

Reference

Myocardial infarction
ischemia/reperfusion
injury) (R, P, H)

Myocardium. In human
epicardial adipose tissues of
ischemic hearts upregulation
of CB1 and PKA,

accompanied by CB2 and

FAAH downregulation,
increased iNOS/eNOS ration
and reduced cell survival
signaling

Increase in circulating
immune cells or in serum of
obese patients with adverse
cardiovascular events.
Elevated endocannabinoid
plasma levels are strongly
associated with coronary
dysfunction in obese human
subjects.

CB2: decrease in

leukocyte
infiltration and
enhancement of
pro-survival
pathways;
CB1: contribution

to cardiovascular
dysfunction, cell
death/dysfunction
in human
endothelial cells
and
cardiomyocytes;
central
hypothermia (the
latter is only in
rodents and can be
protective)

[11,12,76,85– 87,90,184–187]

Heart failure,
cardiomyopathies (R, H)

Myocardium,
cardiomyocytes, endothelial
cells

Myocardium, cardiomyocytes,
circulating immune cells and
platelets

CB2: attenuation

of inflammation/
injury;
CB1: promotion of

cardiac
dysfunction and
cell death in
cardiomyocytes
and endothelial
cells

[64,65,186,188–192]

Atherosclerosis,
restenosis (R, H)

Infiltrating and other immune
cells, vascular smooth muscle
and endothelium

Serum, atherosclerotic plaques CB2: context

dependent
attenuation or
promotion of
vascular
inflammation
(monocyte
chemotaxis,
infiltration and
activation) and
factors of plaque
stability;
attenuation of
vascular smooth
muscle
proliferation;
CB1: increase of

vascular
inflammation and/
or plaque
vulnerability

[67,84,133,134,193–198]

Stroke, spinal cord
injury (R, H)

Brain, microglia, infiltrating
immune cells, endothelium

Serum, brain CB2: attenuation

of inflammation
(endothelial
activation,
leukocyte
infiltration), and
tissue injury;
attenuation of
motor and
autonomic deficits
in a mouse model
of spinal cord
injury;

[90,199–206]
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Disease, sample (R:
rodent; P: pig; C:
canine; H: human)

Expression/changes in CB1/2 Changes in endocannabinoid
levels

Proposed role of
CB receptors in
disease

Reference

CB1: promotes

hypothermia-
dependent
protection, but if
hypothermia is
compensated
ineffective or
enhances injury

Cirrhotic
cardiomyopathy (R, H)

N.D. Myocardium, circulating
immune cells and platelets

CB2: attenuation

of hypotension by
decreasing liver
inflammation;
CB1: contribution

to cardiovascular
dysfunction

[189–192]

Septic shock by live
bacteria (R, H)

N.D. Serum CB2: decrease or

increase in
inflammation and
tissue injury most
likely by affecting
bacterial load;
CB1: contribution

to cardiovascular
collapse

[10,207–210]

Hepatic ischemia-
reperfusion injury (R, P,
H)

Inflammatory immune cells,
activated endothelium

Liver, serum, hepatocytes,
Kupffer and endothelial cells

CB2: attenuation

of inflammation
(endothelial
activation,
leukocyte
chemotaxis,
infiltration and
activation),
oxidative stress,
and tissue injury;
CB1: promotion of

liver injury

[135,138,211–213]

Obesity, nonalcoholic
fatty liver disease,
diabetic complications
(R, H)

Hepatocytes, inflammatory
cells, adipocytes, certain
neurons, sites of diabetic
complications (kidneys, retina
and myocardium)

Liver, adipose tissue, brain,
skeletal muscle, diabetic
kidneys, hearts, retinas, serum

CB2:

Enhancement of
high fat diet-
induced steatosis
and inflammation
or attenuation of
obesity associated
one with age;
CB1: increase in

fat storage,
decrease in
metabolism,
promotion of
insulin and leptin
resistance and
inflammation in
adipose tissue and
in the liver

[5,6,70,101,108,214–221]

Liver fibrosis, cirrhosis,
alcohol-induced liver
injury (R, H)

Activated Stellate cells,
inflammatory cells,
hepatocytes, Kupffer cells

Liver, serum, inflammatory
cells

CB2: Attenuation

of fibrosis and
injury/
inflammation;
CB1: increase in

fibrosis/injury

[14,136,137,191,222,223]

Pancreatitis (R, H) Pancreas Inflamed pancreas CB2: Attenuation

of inflammation;
CB1: context

dependent effect

[145,146,148,224]
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Disease, sample (R:
rodent; P: pig; C:
canine; H: human)

Expression/changes in CB1/2 Changes in endocannabinoid
levels

Proposed role of
CB receptors in
disease

Reference

Inflammatory bowel
disease, colitis,
diverticulitis (R, H)

Epithelial cells, infiltrating
inflammatory cells, enteric
nerves

Inflamed gut Attenuation of
inflammation and
visceral sensitivity

[130,151,225 –229]

Nephropathy (R, H) Kidney, human proximal
tubular cells, podocytes

Kidney CB2: attenuation

of inflammation
(chemokine
signaling and
chemotaxis,
inflammatory cell
infiltration and
endothelial
activation) and
oxidative stress;
CB1: promotion of

inflammation/
injury

[105,219,220,230–233]

Neurodegenerative/
neuroinflammatory
disorders (multiple
sclerosis, Alzheimer’s,
Parkinson’s and
Huntington’s disease,
spinal cord injury) (R,
H)

Microglia, inflammatory
cells, brain lesions, neurons?

Brain, spinal fluid CB2: attenuation

of inflammation
(microglia
activation,
secondary immune
cell infiltration),
facilitation of
neurogenesis;
CB1: attenuation

of excitotoxicity,
hypothermia;
context dependent
effect on injury/
inflammation

[2,7,91,92,152,205,234–250]

Pain (R) Inflammatory cells, certain
neurons

Site of induced chronic
inflammatory pain

CB2: attenuation

of inflammatory
pain via unknown
mechanism(s);
CB1: attenuation

of various forms
of pain by
inhibiting
neurotransmission

[17,95,96,251–266]

Psychiatric disorders
(anxiety and depression,
schizophrenia) (R, H)

Glial, inflammatory cells,
neurons?

Blood, cerebrospinal fluid,
brain (increased in
schizophrenia, but decreased
in brain in depression)

CB2: largely

unexplored, In
rodent models of
depression/anxiety
it may modulate
CNS inflammation
and either
attenuate or
promote anxiety
like behavior;
CB1: context

dependent effect
on anxiety,
improved sleep

[19,267–277]

Rheumatoid arthritis (H) N.D. Synovial fluid, synovia CB2: attenuation

of the autoimmune
inflammatory
response;
CB1: attenuation

of pain

[278]

Cancer (R, H) In various tumors or cancer
cells

Various tumors CB1/2: context

dependent
attenuation or
promotion of
tumor growth
(apoptosis,

[279–282]

[2,22,149,155,157]
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Disease, sample (R:
rodent; P: pig; C:
canine; H: human)

Expression/changes in CB1/2 Changes in endocannabinoid
levels

Proposed role of
CB receptors in
disease

Reference

angiogenesis,
proliferation, etc.)
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Table 2

Potential approaches/directions for future success

Therapeutic approach (target) Possible directions/
approaches for success

Possibly therapeutic
indications in humans
(realistic)

Potential/expected adverse effects

THC based medicines,
cannabinoid based extracts
(CB1, CB2 and unrelated
antioxidant anti-inflammatory
mechanisms)

• Optimization of
route of
administration,
dosing and
indication

• Better selection
criteria for trials,
identification of
potential positive
responders by
initial titration

• Placebo
controlled trials
to establish short
and long term
efficacy in given
indications

• Long term
controlled studies
to determine
possible disease
modifying effects
(e.g. in multiple
sclerosis) and
adverse
consequences
(e.g. immune
and/or
cardiovascular
effects, etc.)

• Combination
approaches in
pain to achieve
better efficacy
and fewer side
effects (e.g. with
opioids, non-
steroid anti-
inflammatory
drugs, etc.)

• Optimization of
the extract
composition for
improved benefit/
risk profile

• Symptomatic
relief in certain
forms of pain and
spasticity (as in
neurodegenerative
disorders such as
multiple sclerosis)

• Stimulation of
appetite in
patients with
wasting disorders

• Attenuation of
chemotherapy-
induced nausea
and vomiting

• Topical
administration in
certain skin
disorders?

• Non-psychoactive
constituents of
marijuana, such
as cannabidiol or
their analogs, may
have therapeutic
utility in certain
forms of acute
tissue injury,
inflammatory
disorders,
diabetes and
diabetic
complications

• In case of THC- containing
formulations, effects related to CB1

stimulation at higher doses (e.g.
psychoactive, cardiovascular,
metabolic side effects) and potential
modulation of immune responses

Peripherally restricted CB1
agonists (peripheral CB1)

• Evaluation of the
feasibility of the
topical/local use
of peripherally
restricted CB1

agonists in
certain forms of
pain and skin
conditions (e.g.
pruritus)

• Topical/local use
in certain forms
of pain and skin
conditions/
diseases? (the
systematic
administration/
use is not likely
because of the
established
adverse
cardiovascular
and metabolic
consequences of
this approach)

• Cardiovascular

• Metabolic

• Kidney

• Gastrointestinal (decreased motility)

• Pro-inflammatory?
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Therapeutic approach (target) Possible directions/
approaches for success

Possibly therapeutic
indications in humans
(realistic)

Potential/expected adverse effects

Peripherally restricted or
global CB2 agonists
(peripheral CB2)

• Reevaluation of
human
indications based
on previous
failures of trials
with mixed
peripherally
restricted CB1/2

agonists

• Search for new
indications

• More preclinical
and clinical
research to
understand the
significance of
tissue and time
specific changes
in CB2 receptor

expression in
pathological
conditions

• Development of
novel, specific
and orally
available ligands
for proof of the
principle studies;
evaluation of
toxicology and
pharmacokinetics

• Various forms of
acute tissue
injuries associated
with
inflammation
(stroke,
myocardial
infarction,
traumatic injury,
organ
transplantation,
etc,)

• Various forms of
inflammatory
diseases if the
antiinflammatory
effects are
confirmed in
humans

• Most likely related to effects on
immune and hematopoietic system

• Effects on fertility?

Peripherally restricted CB1
antagonists, inverse agonists
(peripheral CB1)

• Development and
testing of new
ligands,
toxicology and
safety studies in
rodents, large
animals, and
humans

• Proof of the
principle studies
in large animals
and humans

• Diabetes and
diabetic
complications,

• Cardiometabolic
syndrome

• Kidney disease?

• Gastrointestinal (increased motility)

• Effects on fertility?

Inhibition of EC metabolism,
cellular uptake or
biosynthesis (CB1/2, TRPV1
and nuclear receptors,
prostaglandin and leukotriene
signaling)

• Preclinical
research to
identify the
putative
endocannabinoid
transporter(s),
and to better
understand the
tissue, time, and
disease specific
metabolism of
endocannabinoids
to various other
bioactive
mediators (e.g.
prostaglandins,
leukotriens, etc.)

• Reevaluation of
human
indications based
on previous

• Pain?

• Certain disorders
associated with
anxiety?

• Certain forms of
acute tissue
injury?

• Similar, but acutely less pronounced
than with CB1 agonists. However,

long term use may be associated
with adverse effects similar to
COX2 inhibitors (e.g.
cardiovascular).

• Pro-inflammatory effects in certain
cases?
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Therapeutic approach (target) Possible directions/
approaches for success

Possibly therapeutic
indications in humans
(realistic)

Potential/expected adverse effects

failures of trials
with FAAH
inhibitors in pain

• Search for new
indications, better
and more
selective ligands
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