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Abstract

Rich evidence has shown that cannabis products exert a broad gamut of effects on emotional
regulation. The main psychoactive ingredient of hemp, Δ9-tetrahydrocannabinol (THC), and its
synthetic cannabinoid analogs have been reported to either attenuate or exacerbate anxiety and
fear-related behaviors in humans and experimental animals. The heterogeneity of cannabis-
induced psychological outcomes reflects a complex network of molecular interactions between the
key neurobiological substrates of anxiety and fear and the endogenous cannabinoid system, mainly
consisting of the arachidonic acid derivatives anandamide and 2-arachidonoylglycerol (2-AG) and
two receptors, respectively termed CB1 and CB2. The high degree of interindividual variability in
the responses to cannabis is contributed by a wide spectrum of factors, including genetic and
environmental determinants, as well as differences in the relative concentrations of THC and other
alkaloids (such as cannabidiol) within the plant itself. The present article reviews the currently
available knowledge on the herbal, synthetic and endogenous cannabinoids with respect to the
modulation of anxiety responses, and highlights the challenges that should be overcome to harness
the therapeutic potential of some of these compounds, all the while limiting the side effects
associated with cannabis consumption.
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INTRODUCTION

Anxiety is generally defined as an emotional state characterized by maladaptive and
excessive emotional responsiveness to potentially dangerous circumstances. The
pathological expression of anxiety leads to enduring emotional perturbations with a
consistent apprehension towards the possibility of future, vaguely defined negative events
[1]. According to the current classification of anxiety disorders in the fourth edition of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [2], the main diagnostic
entities in this category are:

- generalized anxiety disorder (GAD), featuring general irritability, anxiety
attacks, chronic apprehension/anxious expectation and secondary phobic
avoidance.
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- panic disorder, characterized by brief (2-10 min) spells of overwhelming anxiety
or fear, accompanied by somatic and cognitive symptoms;

- social anxiety disorder (or social phobia), defined as extreme agitation in social
contexts and avoidance of social situations;

- obsessive-compulsive disorder (OCD), characterized by recurrent and intrusive
anxiogenic thoughts (obsessions), and stereotyped behaviors (compulsions)
aimed at the reduction of the distress caused by the obsessions.

- post-traumatic stress disorder (PTSD), in which a prior intense trauma results in
a long-lasting anxious response, with re-experiencing/flashback phenomena,
avoidance and emotional numbing.

In keeping with their different clinical features and phenomenological presentations, these
disorders are underpinned by divergent neurobiological alterations and respond to partially
different pharmacotherapeutic strategies (outlined in Table 1). A fundamental contribution
in our understanding of the neural bases of anxiety disorders and in the development of
novel therapies has been afforded by animal models and testing paradigms for anxiety-like
behaviors (summarized in Table 2).

Over the last decades, converging epidemiological, clinical and preclinical data have pointed
to a key implication of cannabis and its endogenous system in the regulation of anxiety. In
the following sections, we will present a brief synopsis on cannabinoids and the available
classes of related agents, with a specific focus on their anxiolytic potential, and the scientific
challenges that should be overcome to fully establish the applicability of such drugs in the
therapy of anxiety disorders.

HERBAL AND SYNTHETIC CANNABINOIDS

Herbal cannabinoids

The three species included in the Cannabis genus (or sub-species, depending on the
taxonomic classification; see [3], for a detailed discussion on the issue), sativa, indica and
ruderalis, feature at least 85 unique terpenophenolic compounds, collectively named
phytocannabinoids [4]. The main classes of phytocannabinoids are outlined in Figure 1.
Quantitative analyses of cannabis constituents are usually performed by chromatographic
techniques (generally Gas Chromatography, but also Thin-Layer Chromatography, or High-
Performance Liquid Chromatography), often coupled with Mass Spectrometry. A detailed
description of the instrumental methods used for classification and source tracing of
Cannabis products (including DNA identification for forensic and intelligence purposes) is
beyond the scope of this review, but can be found in [5-7].

The chemical fingerprinting of hemp products has revealed that the two most abundant
phytocannabinoids are Δ9-tetrahydrocannabinol (THC, also named dronabinol) and
cannabidiol (CBD):

The main psychoactive constituent of Cannabis, THC is a highly lipophilic alkaloid
produced mainly in the leaves, flowers and glandular trichomes of the plant. Most of the
pharmacological effects elicited by hemp products, including emotional and cognitive
changes, analgesia, hypothermia and appetite stimulation, are considered to be reflective of
the action of THC as a partial agonist of cannabinoid CB1 and CB2 receptors (see below).
Additionally, THC has been shown to act as an acetylcholinesterase inhibitor [8-10].

In contrast with THC, CBD is not psychotropic, but has nevertheless been shown to play a
role in the modulation of behavioral effects of cannabis [11]. In fact, the THC: CBD ratio is
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the main criterion to define different cannabis chemotypes [12] and has been posited to
contribute to the variability in neurobehavioral outcomes of marijuana or hashish
consumption [13,14]. Interestingly, most cannabis strains encountered in the illegal markets
generally have elevated amounts of THC [15].

The different characteristics of THC and CBD are underpinned by their distinct mechanisms
of action. Whereas THC has nanomolar affinity for both CB1 (Ki = 25.1 nmol/L) and CB2
(Ki = 35.2 nmol/L) receptors, CBD exhibits much lower affinity for either target [16-20];
however, the latter phytocannabinoid was recently found to act as a highly potent antagonist/
inverse agonist of both CB receptors [21], possibly due to a non-competitive mechanism of
receptor blockade [22]. Additionally, CBD has been shown to exert some of its actions
through other receptors, including the vanilloid receptor VR1 and the serotonin receptor 5-
HT1A (for a general overview of the topic, see [11]).

The other main phytocannabinoids, including cannabigerol (CBG), cannabichromene (CBC)
and cannabinol (CBN) (Fig. 1) [4,23], have been shown to exert antibiotic and
antiinflammatory properties, but have not been strongly associated with the behavioral
effects of Cannabis; nevertheless, the recent discovery that CBG is a highly potent agonist
for α2 adrenoceptor and a blocker of serotonin 5-HT1A receptor [24] underscores the
potential importance of these and other alkaloids in the psychoactive profile of cannabis.

Synthetic cannabinoids

In addition to phytocannabinoids, several classes of synthetic CB receptor agonists have
been developed; among these families, the best characterized are the synthetic analogs of
THC - such as the biciclic compounds CP 47,497, CP 55,244, CP 55,940 and the
benxopyrans HU-210 and nabilone (Fig. 2) - and the aminoalkylindole derivatives -
including WIN 55,212-2, JWH-015, JWH-018, JWH-073, JWH-081 and JWH-398 (for a
general review, see [23]). Of these agents, only nabilone has been approved for clinical use
as an antiemetic treatment and an adjunct analgesic for neuropathic pain [25]. Other more
potent synthetic cannabinoids, such as CP 47,497, HU-210 and most JWH compounds, have
regrettably gained great popularity in the market of recreational substances during the last
decade, under the generic brand names of “Spice” or “K2”. Unlike THC, which is a partial
agonist of CB1 receptors, these agents are full, high-potency CB1 receptor activators [26,27],
thereby eliciting greater psychotropic effects than THC (as CB1 receptors are the key
mediators of the psychotropic actions of cannabis). This characteristic, together with their
legal status (recently revoked across most Western countries, including USA as of March
2011) and lack of available testing procedures for the detection of urinary metabolites, has
unfortunately contributed to the great diffusion of “Spice” blends in Central and Western
Europe, as well as Australasia.

ENDOCANNABINOIDS AND THEIR RECEPTORS

Following the identification of THC in the 1960s [28], extensive research was devoted to the
identification of its biological targets and endogenous counterparts. Both objectives were
met around 30 years later, with the characterization of the two major cannabinoid receptors,
CB1 [29] and CB2 [30] as well as the discovery of two most prominent endocannabinoids N-
arachidonoylethanolamine (commonly named anandamide from the Sanskrit ānanda, bliss)
[31] and 2-arachidonoylglycerol (2-AG) [32,33] (Fig. 3).

CB receptors

Although CB1 and CB2 receptors only share 44% sequence identity (68% in the
transmembrane domains), they are both coupled to Gi/o proteins [34] and activated by both
anandamide and 2-AG. In line with their metabotropic nature, CB receptors mediate their
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intracellular response through a number of changes affecting signaling cascades, such as
inhibition of adenylyl cyclase, activation of G-protein-activated inwardly rectifying
potassium channels (GIRKs) and phosphorylation of extracellular signal-related kinases
(ERKs) [35,36]. The distribution pattern of CB1 and CB2 receptors is strikingly divergent,
indicating diverse physiological functions: CB1 is the most abundant metabotropic receptor
in the brain, and is primarily distributed in the synaptic terminals of neurons across all the
major structures that regulate emotional responsiveness, perception and memory, including
prefrontal cortex, amygdala, septo-hippocampal system, striatum, thalamus, brainstem
nuclei etc. [37-41]. CB1 receptors are typically located on presynaptic terminals [42,43], but
they have also been identified in postsynaptic locations [44,45]. Presynaptic CB1 receptors
are posited to serve critical functions for the regulation of synaptic plasticity and
neurotransmitter release; in particular, they mediate the depolarization-induced suppression
of inhibition (DSI) and depolarization-induced suppression of excitation (DSE), consisting
in the reduction of γ-amino-butyric acid (GABA) or glutamate release, respectively, from
presynaptic boutons following stimulation of the postsynaptic terminals [46-49]. In general,
CB1 activation has been shown to inhibit the neurotransmission of other mediators,
including glycine, acetylcholine, norepinephrine and serotonin [50], but the underpinnings
of these phenomena have not been completely elucidated. Additionally, CB1 receptors have
been implicated in short- and long-term synaptic depression, in relation to phasic or tonic
endocannabinoid release (for a review on these topics, see [51]).

The function of CB1 receptors may vary depending on the specific interactions that they
entertain with other molecular targets. For example, CB1 receptors have been found to
associate with other G-protein complex receptors, such as dopamine D2, orexin Ox1, μ
opioid and adenosine A2a, to form heteromeric complexes (reviewed in [52,53])

The key role of CB1 receptors as mediators of neurochemical homeostasis in the brain is
maintained through a complex regulation of their expression. For example, these receptors
are subjected to a rapid internalization (via clathrin-coated pits) following their binding with
full agonists; on the other hand, the receptors are also recycled, with a process that requires
endosomal acidification and dephosphorilation [54].

While CB2 receptors are abundantly expressed in most peripheral organs (and particularly in
immune cells, where they regulate cytokine secretion and modulate cell trafficking) [55],
their distribution in the brain appears to be sparse and particularly confined to microglial
cells; nevertheless, recent evidence has revealed the presence of CB2 receptors in several
areas of the brain [56-58]. Interestingly, a number of studies suggest that neuronal CB2
receptors may be mainly located in postsynaptic terminals [58,59]; nevertheless, the
functional role of these targets in the brain remains largely elusive and awaits further
characterization.

The existence of cannabinoid receptors other than CB1 and CB2 has been postulated based
on ample experimental evidence [60-62]. Interestingly, a number of investigations have
pointed to GPR55 as a novel putative cannabinoid receptor [63,64]; nevertheless, evidence
on the specificity of this receptor for endocannabinoid is still inconclusive [65].

Endocannabinoids

Both anandamide and 2-AG are derivatives of arachidonic acid, an unsaturated C20 fatty
acid with 4 double bonds, which also serves as the precursor for synthesis of other
eicosanoids, including prostaglandins and leukotriens. Anandamide is found in picomolar
concentrations and acts as a high-affinity partial agonist for both CB1 and CB2 receptors. It
is synthesized on demand by enzymatic hydrolysis of the membrane phospholipid N-
arachidonoyl phosphatidylethanolamine (NAPE), a process catalyzed by several
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phospholipases [66-68]. Following release and activation of CB receptors, anandamide is
rapidly removed from the synaptic cleft by a carrier-mediated system [69-72] and
subsequently hydrolyzed by the membrane enzyme fatty acid amide hydrolase (FAAH)
[73-75]. FAAH serves the catabolism of other substrates, including oleoylethanolamine
(OEA) and palmitoylethanolamine (PEA). Both these compounds do not activate CB1
receptors [76], although they may reduce or slow down anandamide degradation by
competing with it for FAAH activity.

In comparison with anandamide, 2-AG is much more abundant (occurring in nanomolar
concentrations across most tissues) and acts as a full agonist of both CB receptors. It is
produced from 1,2diacylglycerol (DAG) by diacylglycerol lipase (DAGL) [77] and
degraded mainly by the cytosolic serine hydrolase monoacylglycerol lipase (MAGL) [78],
although other enzymes are known to contribute to this process [79].

The divergent neurochemical profiles of anandamide and 2-AG underscore their different
physiological roles. Although our current understanding of the different functions
entertained by each endocannabinoid is still rudimentary, the development of FAAH and
MAGL inhibitors [80,81] has been instrumental to elucidate the implication of each
mediator in synaptic and neurochemical regulation. While 2-AG is known as the retrograde
mediator of DSI [82,83] and DSE [84-87], a number of studies suggest that anandamide may
serve as an activity-dependent regulator of monoaminergic transmission [88-90]. Recent
evidence points to a potential biological antagonism between anandamide and 2-AG [91,92];
on the other hand, emerging evidence points to a similar role of anandamide and 2-AG in the
regulation of anxiety (albeit in relation to different receptors) and pain [93]. The
development of JZL195, a potent FAAH/MAGL inhibitor, has in turn revealed that the
behavioral effects of CB1 receptor agonists can be only recapitulated by the combination of
both endocannabinoid-mediated functions [94].

Other lipids have been indicated as putative endocannabinoids, including 2-
arachidonoylglycerylether (noladin ether) [95] and O-arachidonoylethanolamine
(virodhamine) [96] (Fig. 3). Additionally, recent evidence has identified that CB receptors
may be modulated by peptidic ligands, such as hemopressin and its derivatives [97,98].

EFFECTS OF CANNABIS AND CANNABINOID AGENTS ON ANXIETY

Cannabis, THC and CB1 receptor agonists

The employment of cannabis for its medicinal, relaxing and mood-enhancing properties has
been documented across most ancient civilizations. Originally introduced in Chinese
pharmacopoeia during the third millennium BCE [99,100], cannabis became a popular
remedy throughout Asia and Europe in the following centuries [99,101]. The inclusion of
cannabis in the medical treatises by Dioscorides and Galen secured the herb a stable
reputation in the Roman Empire and the Arabic world [101]. Until the early 20th century, the
plant remained a valuable therapy for a large number of diseases [102]; however, growing
concerns about the psychoactive and narcotic effects of cannabis led to a progressive
restriction and ultimate ban of its usage in the United States and several European countries
[100,103]. Despite its illicit status, cannabis remains one of the most popular recreational
drugs, particular among adolescents and young adults, in view of its mood-enhancing and
euphoriant characteristics [104-106].

Most psychological and behavioral effects of marijuana and other hemp products are
induced by THC through activation of CB1 brain receptors. In fact, although THC and most
synthetic cannabinoids are known to activate both CB1 and CB2 receptors, their actions on
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anxiety-like behaviors and emotional regulation are efficiently countered by selective CB1
receptor antagonists, such as rimonabant (see next section) [107].

The studies on the psychological effects of cannabis and THC have unfolded a highly
complex and often contradictory scenario, fostering a long-standing debate on the potential
harms and benefits of its products. An important aspect of this discussion (particularly in
consideration of its legal aspects and the potential therapeutic applications of hemp
derivatives), revolves around the distinction between use and misuse of cannabis. In
particular, whereas the abuse and dependence liability of cannabis is generally well-
recognized [108,109], the definition of these phenomena has been heavily criticized as
reflective of political agendas rather than scientific bases. For instance, the diagnosis of
substance abuse, according to the criteria listed by the DSM–IV TR, is based on the
manifestation of at least one of four symptoms: interference with major professional or
personal obligations; intoxication in hazardous settings; substance-related legal problems;
continued use in the face of persistent social or interpersonal problems [110]. The
applicability of some of these standards to marijuana and other cannabis derivatives,
however, has been questioned [99], also in view of their lower potential to induce physical
harm in comparison with other legal substances, such as alcohol and tobacco [111].

While the controversies surrounding cannabis are far from subdued (and are often permeated
and masked by conflicting ideological credos), standardized studies on cannabinoids have
highlighted that the psychological and behavioral outcomes of this substance are highly
variable and range from relaxation, euthymia and heightened sociability to panic, paranoid
ideation and psychosis [112-116]. A corollary of this observation is that the high
comorbidity rate between cannabis use disorders and psychiatric conditions [100-105] may
indicate that cannabis consumption is either a concurring cause or a “self-therapeutic”
strategy for anxiety and mood disorders [117-123]. The latter interpretation is supported by
the observation that anxiety-spectrum disturbances and traumas in early developmental
stages are a strong predictor for later cannabis use disorders [124-127]; furthermore, several
lines of evidence suggest that the anxiolytic effects of THC may partially account for the
high prevalence of cannabis use in patients affected by PTSD [128-131] and OCD [132].
Accordingly, recent clinical studies have shown that THC elicits therapeutic effects in OCD
[133] and trichotillomania, an impulse-control disorder characterized by compulsive hair-
pulling [134]. Nevertheless, prospective analyses show that cannabis use and dependence
increase the risk for development of panic disorder [135], suggesting that the effect of
cannabis may vary with respect to the nosological entities within the spectrum of anxiety
disorders. Of note, chronic consumption of cannabis has been hypothesized to exacerbate
depressive or anxious manifestations, and reduce the therapeutic efficacy of anxiolytic
agents [122,136-138]; an interesting theoretical implication of this finding is that long-term
exposure to cannabinoid agents may lead to profound alterations of synaptic plasticity and
neurochemical homeostasis and alter the pathophysiological trajectory of anxiety and mood
disorders. Thus, while cannabis may be initially used as a self-therapy for certain anxiety
disorders, the prolonged exposure to this substance in vulnerable individuals may in turn
alter or aggravate the clinical course of these conditions and render the patients refractory to
standard treatments.

The ability of cannabis to either exacerbate or attenuate emotional reactivity is highly
influenced by numerous factors, including its chemotype, as well as the influence of genetic,
developmental and contextual variables. Unfortunately, little is still known about the
susceptibility factors that govern the behavioral outcomes of cannabis in patients affected by
anxiety-spectrum disorders. Indeed, several components have been shown to play a role in
this link, including genetic background, age, gender, environmental stress and concurrent
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use of other drugs; a detailed analysis of these determinants is outside the scope of the
present work, but the interested reader should refer to [139].

Aside from the influence of vulnerability factors, the available evidence indicates that
cannabis, THC and other CB1 receptor agonists exercise a bidirectional influence on anxiety
responses as a function of the dosage. The majority of users report that consumption of
modest amounts of cannabis and CB1 receptor agonists results in euphoria, relaxation,
heightened perception, sociability and creativity, moderate to high doses have been reported
to elicit phobia, agitation, panic, dysphoria, psychotic manifestations and cognitive
impairments [112-116,124,140-143]. In line with these premises, early studies showed a
robust anxiolytic efficacy of low-dose nabilone in comparison with placebo [144,145].
Additionally, the few available reports on the clinical outcomes of recreational cannabinoids
show that a moderate consumption of “Spice” blends is generally associated with euphoria
and disinhibition [146], but the abuse of these substances is conducive to high levels of
anxiety, panic, paranoid ideation and mood disturbances [147-151].

The biphasic effects of cannabinoids on anxiety-related responses have been extensively
documented in rodents. In agreement with human evidence, preclinical studies have
elucidated that the acute administration of low doses of CB1 receptor agonists elicits
anxiolytic-like in approach/avoidance tasks [152-156]; conversely, high concentrations of
the same compounds are generally associated with the opposite outcomes [157-162] (for
complete reviews of the topic, see [163,164])

The bidirectional action of CB1 receptors on anxiety responses may be related to the
modulatory role of these targets on GABA and glutamate release across amygdala and other
forebrain areas [41,165,166]. As these two major neurotransmitters affect anxiety in an
opposite fashion, different doses of cannabinoids and synthetic CB1 receptor agonists may
indeed produce highly divergent effects, in relation to their ability to affect the homeostasis
and the balance of GABA and glutamate (for a review on these issues, see [163]).
Furthermore, CB1 receptors have been shown to play critical roles in the regulation of most
neurochemical substrates of anxiety, including the neurotransmitters serotonin,
norepinephrine and acetylcholine, as well as stress hormones, colecystokynin and opioid
peptides [50,163].

In line with this concept, the infusion in the periaqueductal grey of arachidonyl-2-
chloroethylamide (ACEA), an anandamide synthetic analog with high CB1 receptor
selectivity, elicited anxiolytic-like effects in rats in an elevated plus maze, with a bell-shaped
dose-response curve [167], the highest doses being associated to no significant behavioral
change. Novel categories of compounds have been patented for potential efficacy as
selective CB1 receptor modulators, including sulfonyl-benzamides [168] and tetrasubstituted
imidazole derivatives [169]. To the best of our knowledge, however, no findings on the
action of these compounds in anxiety regulation have been reported to date.

CB1 receptor antagonists/inverse agonists

The cannabinoid CB1 receptor antagonists/inverse agonist rimonabant was introduced into
clinical practice by Sanofi-Aventis in 2006 as a treatment for obesity [170] and smoking
cessation [171]. The majority of preclinical studies found that these compounds are
anxiogenic at high doses [158,159,172,173] and ineffective at low doses [174,175]. The
anxiogenic properties of CB1 antagonists, were unequivocally confirmed by clinical data on
the psychiatric side effects of rimonabant. The significant increase in anxiety, depression
and suicidality in patients under treatment with rimonabant [176-179], in particular, led to
the withdrawal of the drug from the European market in October, 2008. As a consequence,
several pharmaceutical companies announced the interruption of their clinical research on
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CB1 receptor antagonists, including taranabant (from Merck) and otenabant (from Pfizer),
both in Phase 3 of development. Some of the anxiogenic properties of rimonabant and
analogs have been speculated to be due to their activity as inverse agonists; as a result, the
therapeutic use of newly-developed neutral CB1 antagonists has been proposed, with the
hypothesis that these compounds would not elicit the untoward psychological effects
observed with rimonabant and its analogs [180,181]; this idea is supported by recent
findings, showing that unlike CB1 receptor inverse agonists, the neutral antagonists of this
targets fail to facilitate the acquisition or consolidation of fear [182].

CB2 receptor ligands

Few studies have actually evaluated the role of CB2 receptor in anxiety and stress response.
While this receptor was posited to be mainly expressed mainly in immune cells and
peripheral areas, its identification in the brain under pathological conditions, such as
Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis spinal cord
[183-185], led to a number of studies aimed at the assessment of its potential role in brain
function and behavioral regulation. Some of these investigations indicated that the
suppression of CB2 receptor in the brain, through intracerebroventricular injection of
antisense nucleotide sequences, elicited anxiolytic effects in rodents [186]. In contrast,
Garcia-Gutierrez and Manzanares [187] recently described that the overexpression of CB2
receptors reduced anxiogenic-related behaviors in the light-dark box and elevated plus maze.
These premises point to the possibility that CB2 receptor ligands may also play a role in the
modulation of anxiety disorders. This hypothesis, however, awaits further examination with
proper pharmacological tools.

CBD

Several studies suggest that THC and CBD may exert opposite actions on brain function and
psychopathology [188], possibly in relation to the action of CBD as a potent CB1 receptor
antagonist/inverse agonist [21] (see above). Several lines of preclinical work have shown
that CBD reduces the effects of THC on several behavioral functions [189-191]. In line with
these data, CBD has been found to reduce the anxiety and improve the sensation of well
being induced by an acute, high THC dose in healthy volunteers [192].

In contrast with these data, a number of studies have shown that CBD pretreatment
potentiated the behavioral effects induced by THC [193-195]. These actions may signify the
ability of CBD to inhibit cytochrome P450-mediated drug metabolism [196,197], which may
increase THC blood and brain concentrations [193,195].

Notably, the behavioral outcomes of CBD do not appear to be only due to potential
pharmacodynamic/pharmacokynetic competition with THC; indeed, recent studies have
shown that CBD exerts inherent anxiolytic effects, both in rodent models [157,198-201] and,
more recently, in patients affected by social phobia [202,203]. The anxiolytic action of CBD
may be linked to 5-HT1A receptor, but not through benzodiazepine receptors [204]. Of note,
the anxiolytic action of CBD also appears to be bidirectional, as only low to moderate doses,
but not high doses, have been associated with exert anxiolytic effects [200,205].

The anxiolytic action of CBD do not appear to be mediated by benzodiazepine receptors
[204], but rather by 5-HT1A serotonin receptors in the bed nucleus of the stria terminalis
[206], a critical component of the amygdaloid complex involved in the regulation of stress
response.

Accordingly, CBD has been shown to reduce amygdalar responses to fearful stimuli [207];
this mechanism may be essential for the anxiolytic effects of this compound in social phobia
[203]. Furthermore, CBD has been shown to elicit antipanic effects through the activation of
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5-HT1A receptors in the dorsal periaqueductal gray, a critical area for the modulation of
emotional reactivity to stress [208,209].

Endocannabinoid transport blockers

The systemic administration of the endocannabinoid transport blocker AM404 (Fig. 4) was
shown to elicit anxiolytic-like behaviors in the elevated plus maze and defensive withdrawal
in adult rats, as well as an attenuation of ultrasonic vocalizations in rat pups [175]. The same
compound was shown to attenuate marble burying (a paradigm for compulsivity testing) in
mice, suggesting that this compound may have some potential efficacy for OCD [206].
Interestingly, the anxiolytic effects of AM404 were shown to be contributed by both CB1
and 5-HT1A receptors [152,210], in a fashion similar to the potent CB1 receptor agonist CP
55,940 [160]. Additionally, AM404 has been suggested to act as a FAAH inhibitor [211],
although evidence in this respect is controversial [72]. Indeed, despite the identification of
potential candidate endocannabinoid binding sites [212], no final evidence is currently
available on the existence and/or molecular identity of the endocannabinoid transporter.

Although the possibility of targeting the endocannabinoid carrier for the development of
anxiolytic compounds is appealing and has been targeted by a patent proposing these
compounds as a pharmacological support for psychotherapy [213], the elusive molecular
identity of the transporter itself has greatly limited the studies. Furthermore, preliminary
data indicate that AM404 elicits reward in animals and is self-administered by squirrel
monkeys [175,214], raising the possibility that endocannabinoid transport blockers may be
addictive.

FAAH inhibitors

The prototypical FAAH inhibitor URB597 (Fig. 4) has been shown to reduce anxiety-like
behaviors in rats, in a rimonabant-sensitive fashion [155,163,215-217]. In addition to its
anxiolytic-like properties, URB597 was found to exert also antidepressant-like effects in
several animal models with high face and predictive validity, such as the forced swim, tail
suspension and chronic mild stress paradigms [89,210,216,218]. The anxiolytic action of
FAAH inhibitors has been suggested to depend on the enhancement of anandamide in the
dorsolateral periaqueductal gray [219]; interestingly, however, only low doses of URB597 in
the prefrontal cortex were found to elicit anxiolytic-like effects, through CB1 receptor
activation. However, higher doses ceased to elicit anxiolysis, in view of their interaction
with TPRV1 vanilloid receptors [220]. Furthermore, the anxiolytic and antidepressant
actions of FAAH inhibitors were observed only under conditions of high environmental
aversiveness, but not under normal conditions [163,218,221]. Importantly, the psychotropic
effects of FAAH inhibitors are partially distinct from those associated with cannabinoids, in
that they appear to fail to reproduce the hedonic and interoceptive states produced by CB
receptor agonists [89] and to induce self-administration in squirrel monkeys [222]. Taken
together, these data suggest that FAAH inhibitors may be promising tools in the therapy of
anxiety and mood disorders with a safer profile than cannabinoid direct agonists. This idea
has been recently endorsed by several authors in recent articles and patents, featuring novel
categories of highly selective and potent FAAH inhibitors [223-225] [226]. However, it
should be noted that recent data have recently shown that URB597 induce a number of side
effects in rats, including social withdrawal, working memory deficits [227] and impairments
in auditory discrimination and reversal of olfactory discrimination [228].

MAGL inhibitors

The role of 2-AG in emotional regulation has been difficult to ascertain until the recent
development of highly selective monoacylglycerol lipase (MAGL) inhibitors [35,223].
Several lines of evidence have suggested that 2-AG plays a pivotal role in the
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pathophysiology of anxiety and defensive behaviors. The prototypical MAGL inhibitor,
JZL184 (Fig. 4), has been shown to enhance the levels of 2-AG, but not anandamide; this
effect is due to its extremely high selectivity for MAGL over FAAH and other brain serine
hydrolases. Recent evidence has shown that this compound exerts anxiolytic-like effects in
the elevated plus maze and in marble buyring, at doses that do not affect locomotor activity
[93,229,230]. Similarly to the effects described for FAAH inhibitors (see above), the
anxiolytic effects of this compound were observed in highly aversive (or anxiogenic)
contextual settings [229]. The neurobiological role of 2-AG in anxiety is still poorly
understood, although several studies have shown that environmental stressors alter its
biosynthesis and degradation in key brain structures controlling emotional regulation,
including periaqueductal grey, amygdala and hippocampus [231,232]. Interestingly, recent
evidence has shown that the anxiolytic properties of JZL184 appear to be mediated by CB2,
rather than CB1 receptors [93], pointing to a potential implication of this receptor in the role
of 2-AG in anxiety regulation.

CURRENT AND FUTURE DEVELOPMENTS

In light of the limitations of our current pharmacological armamentarium for anxiety
disorders, the ability of cannabinoids to modulate emotional responses is extremely
attractive for the development of novel anxiolytic agents [217]. At the same time, great
concern arises from the protean role of cannabinoids on the regulation of these responses, as
well as their misuse liability and other side effects. The identification of operational
strategies for the employment of cannabinoids in the therapy of anxiety disorders is
therefore a fundamental goal in psychiatry research.

As outlined above, clinical evidence strongly suggests that acute administration of low doses
of CB1 receptor agonists results in anxiolytic effects, while excessive activation of these
targets elicits opposite outcomes, following a reverse U-shaped dose-response pattern.
Hence, a primary strategy to harness the anxiolytic properties of cannabinoids could consist
in the employment of partial, low-affinity CB1 agonists, which may ensure a relatively high
therapeutic index and the stabilization of the activation of this target within a range
associated with mood enhancement and/or anxiolysis. This idea is indirectly supported by
the mirroring observation that anecdotal reports on highly potent, high-affinity synthetic
cannabinoids (such as those contained in “Spice” blends) trigger greater psychoactive effects
than the partial CB agonist THC [26]. This concept indicates a potential evolution in the
search for direct CB agonists, in sharp contrast with the previous trend aimed at the
identification of high-affinity CB receptor activators.

An alternative strategy to achieve a similar therapeutic goal may lie in the combination of
CB1 receptor agonists with low dosages of antagonists (preferably neutral, in order to avoid
potential side effects linked to CB1 inverse agonism); this intriguing approach, which has
been indicated in a recent patent [233], is based on the likely mechanism of action of
Sativex®, a cannabinoid mouth spray containing THC and CBD (in a ratio of 1.08:1) and
marketed for the treatment of neuropathic pain, spasticity and overactive bladder, in
consideration of the action of CBD as a CB1 receptor antagonist. However, recent
preliminary clinical studies have shown that this formulation did not significantly reduce
anxiety (in fact, it was reported to induce a mild, yet not significant increase of this
symptom) [234,235], and that CBD did not appear to elicit a significant opposition to the
effect of dronabinol [235], plausibly indicating that a higher concentration of this ingredient
(or lower relative amount of THC) may be necessary to elicit anxiolytic effects.

A third, highly promising avenue for the development of cannabinoid-based anxiolytic
therapies may be afforded by FAAH inhibitors. Unlike endocannabinoid transport blockers
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and direct CB receptor agonists, these compounds exhibit a number of highly desirable
properties for anxiolytic agents: first, they appear to maintain their anxiolytic and
antidepressant effect not only under conditions of acute administration, but also following
long-term treatment [93,210]; second, they appear to elicit their effects only in conditions of
highly aversive environmental circumstances (i.e., similar to those that would in fact require
an anxiolytic treatment); third, they have no apparent addiction liability [89,222]. The
neurobiological bases of this phenomenon are not completely understood, and may be
related to the involvement of other FAAH substrates, such as OEA or PEA; however, recent
investigations suggest that the lack of 2-AG enhancement ensuing FAAH inactivation may
contribute to the lack of reinforcing properties of URB597 [236], potentially suggesting a
different role of anandamide and 2-AG in the modulation of reward; this idea is actually
consistent with the recent finding that 2-AG is induces self-administration in monkeys [237].

A key problem concerning the potential application of cannabinoid-related agents and
cannabinoids is the relatively little information about their long-term effects following
chronic administration. Indeed, the subjective effects of cannabis have been shown to be
typically different in chronic users as compared to occasional marijuana smokers [238,239].
Prolonged consumption of cannabis has been shown to induce affective sequelae, including
alexithymia and avolition [113,240-242]. Interestingly, tolerance has been shown to the
effects of THC [243,244], while no information is available on endocannabinoid-related
agents. Long-term administration of cannabinoids has been shown to result in a number of
neuroplastic adaptive processes, including CB receptor down-regulation [245,246]. Some of
these phenomena may indeed be critical in shaping the different emotional responsiveness to
cannabis throughout life and reflect a potential pathophysiological loop which may
compound the severity of pre-existing anxiety and affective disorders.

Finally, another important step for the employment of cannabinoid-based anxiolytic
therapies will be the analysis of the vulnerability factors implicated in the differential
responses and long-term sequelae induced by cannabis consumption. For example,
numerous meta-analyses and longitudinal studies have established that cannabis
consumption in adolescence is conducive to an increased risk for psychotic disorders
[247-250]. This association is particularly significant in the presence of other genetic
factors, such as the Val108Met allelic variant of the gene encoding Catechol-O-
methyltransferase (COMT) [251,252], one of the main enzymes for the degradation of the
neurotransmitter dopamine. Interestingly, it has been shown that the synergistic effect of
COMT haplotype and cannabis in adolescence is more robust in conjunction with
predisposing environmental variables, such as the exposure to urbanicity and psychosocial
stress [253]. Another gene that may modulate the behavioral responsiveness to cannabinoids
is Nrg1, which encodes for the synaptic protein neuregulin 1. Indeed, the heterozygous
deletion of this gene ablates the development of tolerance to the anxiogenic effects of CB
receptor agonists [254,255]. These findings suggest that the employment of a
pharmacogenetic approach may be a critical screening instrument to identify which patients
may be treated with cannabis for medical purposes without risks of neuropsychiatric side
effects. Notably, the role of genes in the mental sequelae of cannabis may also be
contributed by epigenetic factors, in consideration of the recent finding that THC induces
expression of histone deacetylase 3 [256].

While studies on the biological determinants of different responses to cannabis are still at
their preliminary stages, advances in this area may be essential to allow a personalized
approach for the employment of cannabinoid-based therapies in anxiety and mood disorders.
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Fig. 1.
Chemical structures of the major phytocannabinoids. For more details, see text.
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Fig. 2.
Chemical structures of the synthetic THC analogs CP55,940, CP55,244, CP 47,497 and
HU-210. For more details, see text.
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Fig. 3.
Chemical structures of the major endocannabinoids. For more details, see text.
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Fig. 4.
Chemical structures of endocannabinoid degradation inactivators. For more details, see text.
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Table 1

Current pharmacological strategies for the treatment of anxiety disorders

1 Generalized anxiety disorder

a. Benzodiazepines

b. Buspirone

c. Selective serotonin reuptake inhibitors

2 Panic attack

a. High-potency benzodiazepines

b. Tricyclic antidepressants

c. Selective serotonin reuptake inhibitors

d. Monoamine oxidase inhibitors

3 Post-traumatic stress disorder

a. Selective serotonin reuptake inhibitors

b. Low-dose antipsychotic agents

4 Obsessive-compulsive disorder

a. Tricyclic antidepressants

b. Selective serotonin reuptake inhibitors
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Table 2

Paradigms for testing of anxiety-like behaviors in rodents

1 Unconditioned anxiety

a. Tests for social anxiety

i. Maternal separation-induced ultrasonic vocalizations (for pups)

ii. Social interaction

b. Tests based on approach/avoidance conflict

i. Novel open field

ii. Defensive withdrawal

iii. Elevated plus maze

iv. Elevated T-maze

v. Zero maze

vi. Light/dark box

vii. Emergence test

c. Tests based on antipredator defensive behavior

i. Mouse defense test battery

ii. Predator urine exposure test

iii. Predator exposure test

d. Other tests

i. Novelty-induced feeding suppression

ii. Marble burying

iii. Defensive burying

2 Conditioned anxiety

a. Tests on conditional fear

i. Fear- conditioned freezing

ii. Fear-potentiated startle

iii. Conditional fear-induced analgesia

b. Operant conflict test

i. Geiller-Seifter test (conditioned suppression of eating)

ii. Vogel test (conditioned suppression of drinking)
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