
Cannabis sativa is a common plant that has been used 
for several purposes for millennia. Desiccated flowers of 
some cannabis plant varieties that contain psychotropic 
compounds were used by so- called healers in early civi-
lizations1. Anecdotal evidence and, more recently, med-
ical case reports suggest that the plant has therapeutic 
effects1. In the late 20th century, the first cannabis- 
derived compound was approved for clinical use2, and 
subsequently the first was approved for a neurological 
disorder3,4.

The typical natural products that derive from cannabis  
plant flowers (cannabinoids) — such as Δ9-tetra-
hydrocannabinol (THC) and the non-euphoric can-
nabidiol (CBD)5,6 — were characterized in the 1960s, 
leading to major breakthroughs in our understanding  
of the plant’s effects. Insights into the mechanism of 
action of THC, which is the psychotropic component  
of marijuana, led to identification of the cannabinoid 
receptors in the 1990s7,8 and, consequently, of endo genous 
ligands of these receptors, which became known as 

endocannabinoids9–12. Subsequently, it became clear that 
cannabinoid receptors and endocannabinoids are pleio-
tropic signalling molecules involved in re- establishing 
homeostasis after pathological insults, suggesting thera-
peutic opportunities for multiple pathologies, including  
neurological disorders13–16. Studies in animal models  
soon showed that this signalling system is altered in neuro-
logical diseases, motivating efforts to translate these 
find ings into treatments17. The approval of nabiximols 
— a combination of THC and CBD — for the treatment 
of pain and/or spasticity in multiple sclerosis (MS) in 
2005 (ref.3) was a milestone in cannabis research.

In this Review, we first provide an overview of can-
nabinoids and the extended endocannabinoid system 
(the endocannabinoidome). We then consider the 
molecular and cellular bases of endocannabinoidome 
function and malfunction in the brain, and discuss 
preclinical and clinical studies of cannabinoids and 
endocannabinoidome- based drugs as potential therapies 
in neurological disorders.
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Cannabinoid signalling
Cannabis and cannabinoids
Following increased recreational use of marijuana in the 
1960s, anecdotal reports indicated its benefits in con-
ditions such as MS, epilepsy and Tourette syndrome. 
Consequently, major efforts were made to identify the 
chemicals responsible for the euphoric, perception- 
altering and potential medicinal effects of marijuana and 
other preparations of cannabis flowers18–21. These efforts 
culminated in identification of cannabinol (later shown 
to be a processing product of THC), CBD and THC5,6,22. 
In animals, only THC (and to a lesser degree cannabinol) 
produce similar effects to those of marijuana, such as 
catalepsy, hypolocomotion, analgesia and hypothermia 
in mice and static ataxia in dogs23,24. Consequently, THC 
was considered to be the major psychotropic compo-
nent of recreational cannabis preparations. Indeed, 
>100 unique cannabinoids have now been identified 
and almost all are non- psychotropic25, although many 
are present in recreational cannabis preparations.

Although THC mediates the euphoric effects of 
cannabis preparations26, there is no reason to believe 
that it also mediates the apparent medicinal effects of 
cannabis, and CBD is also considered clinically inter-
esting for its therapeutic potential in several disorders. 
Specific central and peripheral targets of THC and CBD 
have been identified7,8,25 — THC is relatively specific for 
cannabinoid receptors, and CBD modulates the activity 
of several proteins. The psychoactivity of THC narrows 
its therapeutic window and limits its applications, but 
CBD is more amenable to clinical development, even for 
paediatric populations27,28.

The endocannabinoid system
Use of a synthetic, radiolabelled THC analogue led to 
the initial identification of high- affinity binding sites 
for THC in the brain29, later identified as the canna-
binoid receptor 1 (CB1), a G protein- coupled receptor 
(GPCR) that is expressed most abundantly in the brain. 
Cannabinoid receptor 2 (CB2), which is also a GPCR, 

was later identified by homology cloning and found to 
be highly expressed in the immune system7,8. These fun-
damental breakthroughs led to identification of endo-
genous CB1 and CB2 ligands. The lipids anandamide (the  
ethanolamide of arachidonic acid) and 2-arachidonoyl-
glycerol (2-AG) (fig. 1) were identified in brain and intes-
tinal samples and shown to activate CB1 and CB2 with 
high affinity and efficacy9–11. Consequently, these lipids 
were named endocannabinoids12.

Subsequently, enzymes involved in endocannabinoid  
biosynthesis and inactivation were identified30–33 (fig. 1).  
N-acylphosphatidylethanolamine (NAPE)-specific phos-
pholipase d-like hydrolase (NAPE-PLD) catalyses the syn-
thesis of anandamide and other N-acylethanolamines33, 
and fatty acid amide hydrolase (FAAH) cata lyses the 
hydroly sis of anandamide (and other N-acylethanolamines 
and fatty acid primary amides)31. Diacylglycerol lipase α 
(DAGLα) and DAGLβ catalyse the biosynthesis of 2-AG 
and other monoacyl glycerols30 and monoacylglycerol 
lipase (MAGL) catalyses the hydrolysis of 2-AG (and that 
of other monoacylglycerols)32. This system of endogenous 
signals, receptors and metabolic enzymes became known 
as the endocannabinoid system (Table 1).

Alterations in the endocannabinoid system are found 
in experimental models of, and patients with, most neuro-
logical diseases34–36 and genetic manipulation of the 
system in mouse models alters susceptibility to neuro-
degenerative disorders37–41. These findings suggest that 
targeting components of the endocannabinoid system is 
a possible therapeutic strategy42.

The endocannabinoidome
The endocannabinoid system is complicated by prom-
iscuity of mediators, overlap with other pathways and 
alternative metabolic processes, so modulation of its 
components affects a wider endocannabinoid- related 
network known as the endocannabinoidome (Table 1). 
This complex system poses a challenge for the devel-
opment of selective endocannabinoid- based drugs but 
also offers new opportunities for the exploitation of non- 
THC cannabinoids, which often modulate several endo-
cannabinoidome proteins (fig. 1). The main elements of 
and mechanisms involved in the endocannabinoidome 
are outlined below.

Endocannabinoid degradation. Direct activation of CB1 
— claimed to be the most abundant GPCR in the mam-
malian brain — is accompanied by CNS- related adverse 
effects that can be serious16. Inhibition of FAAH (which 
increases levels of anandamide and therefore increases 
CB1 activation) does not normally have such effects but 
does increase levels of other endogenous FAAH sub-
strates that activate other receptors, including peroxi-
some proliferator- activated receptor- α (PPARα), orphan 
GPCR 119 (GPR119), orphan GPCR 55 (GPR55) and 
the transient receptor potential cation channel subfamily 
V member 1 (TRPV1)17. These receptors often have roles 
opposite to those of cannabinoid receptors43–46. Similarly, 
substrates of MAGL include monoacylglycerols other 
than 2-AG47 that also target receptors other than CB1 
and CB2, including TRPV1 and GPR119 (refs45,48). 
FAAH and MAGL inhibitors have been proposed as 

Key points

•	Cannabinoid	receptors	1	and	2	(CB1	and	CB2),	the	two	endocannabinoids	
anandamide	and	2-arachidonoylglycerol,	and	endocannabinoid	anabolic	and	
catabolic	enzymes	form	the	endocannabinoid	system.

•	Endocannabinoid	signalling	is	involved	in	regulation	of	cell,	tissue,	organ	and	
organism	homeostasis,	brain	development,	neurotransmitter	release	and	synaptic	
plasticity,	and	cytokine	release	from	microglia,	and	hence	is	implicated	in	multiple	
neurological	disorders.

•	Endocannabinoid	signalling	is	altered	in	most	neurological	disorders;	enhancers	or	
inhibitors	of	endocannabinoid	signalling	can	have	therapeutic	effects	in	preclinical	
models,	depending	on	disease	characteristics	and	the	roles	of	CB1	and	CB2.

•	Endocannabinoids	can	activate	different	receptors	and	their	biosynthetic	and	
catabolic	pathways	are	often	shared	with	other	mediators.	Consequently,	the	system	
is	considered	to	be	part	of	an	expanded	signalling	system,	the	endocannabinoidome.

•	The	endocannabinoidome	hinders	therapeutic	targeting	of	endocannabinoid	anabolic	
or	catabolic	enzymes	but	inhibitors	of	endocannabinoid	inactivation	and	allosteric	
modulators	of	CB1	and	CB2	are	being	actively	investigated	in	neurological	disorders.

•	The	existence	of	the	endocannabinoidome	explains	in	part	why	some	non-	euphoric	
cannabinoids,	which	affect	several	endocannabinoidome	proteins,	are	useful	for	the	
treatment	of	neurological	disorders,	such	as	multiple	sclerosis	and	epilepsy.
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safer alternatives to direct CB1 agonists, but their effects 
are occasionally unpredictable because they indirectly 
activate non- cannabinoid receptors.

Inhibition of their enzymatic hydrolysis makes anan-
damide and 2-AG available for other enzymatic reac-
tions that produce mediators with different receptors. 
Anandamide and 2-AG can be metabolized via oxida-
tion by cyclooxygenase 2 (ref.49) and the end products 
(prostaglandin ethanolamides and prostaglandin glyc-
erol esters) act at receptors other than cannabinoid and 
prostanoid receptors50,51. Furthermore, 2-AG can be 
phosphorylated to the corresponding lysophosphatidic 
acid, which acts at its own receptors52. Anandamide and 
2-AG can also be inactivated by other hydrolases47,53 
(fig. 1), but these enzymes also metabolize other lipids, 
so targeting them would create other problems.

Finally, 2-AG is a more effective CB1 agonist than 
anandamide, so increasing its levels by inhibition of 
MAGL can cause desensitization of CB1. Consequently, 
chronic administration of MAGL inhibitors can produce 
effects that are opposite to those of CB1 activation or 
cause tolerance54,55. Conversely, 2-AG is a precursor of 
arachidonic acid and pro- inflammatory prostanoids, so 
beneficial effects of MAGL inhibitors, particularly those 
seen in experimental models of Alzheimer disease (AD) 
and Parkinson disease (PD)56,57, might be mediated by 
inhibition of prostanoid receptor signalling.

Endocannabinoid biosynthesis. Redundancy and prom-
iscuity are hallmarks of endocannabinoid biosynthesis 
as well as degradation. Anandamide and 2-AG can be 
produced by several pathways and enzymes that are also 
involved in the biosynthesis of other N-acylethanolamines 
and monoacylglycerols17 (fig. 1). Therefore, inhibition  
of the two main enzymes involved in endocannabinoid 
synthesis might not always selectively or effectively 
reduce tissue levels of the two endocannabinoids and 
could affect levels of other mediators.

Promiscuity of endocannabinoid targets. To complicate 
things further, endocannabinoids act on other targets; 
for example, anandamide activates TRPV1 and PPARγ 
and inhibits Cav3.2 Ca2+ channels and transient recep-
tor potential cation channel subfamily M member 8 
(TRPM8) channels, whereas 2-AG activates TRPV1 
channels and GABAA receptors17. Consequently, even 
if anandamide and 2-AG were hydrolysed selectively 
or were not precursors of other bioactive molecules, 
their inhibition could indirectly modulate the activity 
of receptors other than CB1 and CB2.

Endocannabinoid- like mediators. The complexity of 
endocannabinoid- related molecules extends to other 
long- chain N- acyl-amides, including N- acyl-taurines58, 
N- acyl-serotonins59, N- acyl-dopamines60, fatty acid pri-
mary amides31 and a plethora of N- acyl-amino acids. 
Each of these mediators has its own molecular targets 
and meta bolic enzymes (fig. 1) and interacts with these 
promiscuously. These receptors and enzymes are often 
shared with the endocannabinoids, justifying the name 
of endocannabinoidome for this complex signalling 
system61 (fig. 1).

Allosteric modulators of CB1 and CB2. Positive and 
negative allosteric modulators of CB1 and CB2 are 
emerging as possible solutions to the complexity of the  
endocannabinoidome. By modulating endocanna-
binoid signalling at these receptors, they preserve the 
site- selectivity and time- selectivity of endocannabinoid 
action but, unlike FAAH and MAGL inhibitors, do not 
interfere with other mediators16. Allosteric modulators 
of CB1 and CB2 that have been identified62,63 include 
endogenous molecules, such as the haemopressins 
and related peptides, which are hydrolytic products of 
α- haemoglobin64, and some previously discovered lipids, 
such as lipoxin A4 and pregnenolone65,66.

Physiological roles
CB1 receptors
Advanced microscopy techniques, such as electron 
microscopy and super- resolution microscopy, have 
refined knowledge of the anatomical distribution of 
CB1 receptors in the brain67 and have revealed some 
molecular mechanisms behind the major effects of 
THC and synthetic CB1 agonists on mood, perception, 
cognition and locomotion in humans and animals68. 
A major breakthrough was the discovery that CB1 is 
mostly located presynaptically in excitatory and inhib-
itory neurons69,70. Other important findings include the 
presence of DAGLα in postsynaptic membranes and of 
MAGL in axon terminals, and that presynaptic CB1 can 
inhibit voltage-gated Ca2+ channels and vesicular release 
of GABA or glutamate69. Together, these findings indicate 
that endocannabinoids, particularly 2-AG, are inhibitory  
retrograde neuromodulators71 (fig. 2).

This hypothesis has subsequently been confirmed 
in almost all brain regions investigated. Depending on 
whether CB1 is expressed in glutamatergic or GABAergic 
afferents, retrograde activation of the receptor underlies 
short- term and long- term forms of synaptic plasticity, 
including depolarization- induced and metabotropic 
receptor- mediated suppression of excitatory and inhibi-
tory neurotransmission, long- term depression of excita-
tion or inhibition, and long- term potentiation72. These 
effects, often through modulation of multi- synaptic 
circuitries, are thought to underlie most CB1-mediated 
effects of endocannabinoids. In neurological disor-
ders42,72, the timing of CB1 activation and the distribu-
tion of the receptor between inhibitory and excitatory 
terminals might be altered, thereby leading to profound 
alterations of CB1 function.

CB1 receptors are not only expressed presynap-
tically or only in neurons (fig. 2). Postsynaptic CB1 
receptors mediate slow self- inhibition of neocortical 
interneurons73 and change expression of precursors of 
appetite- controlling peptides in the arcuate nucleus 
of the hypothalamus74,75. Some evidence suggests that a 
small proportion of postsynaptic CB1 is located in the 
external membrane of mitochondria76, where it inhibits 
electron transport and the respiratory chain, thereby 
affecting brain metabolism and memory formation77. In 
astrocytes, CB1 is involved in the regulation of synaptic 
plasticity in the hippocampus and in leptin signalling 
in the hypothalamus78,79. Activation of CB1 also stimu-
lates proliferation of adult progenitor stem cells and their 
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differentiation into neurons or astrocytes80, a role that 
could be relevant to neurodegenerative disorders.

CB2 receptors
Evidence from studies in the context of neurological dis-
ease indicates that the major role of CB2 is immune mod-
ulation. Studies of human brain samples indicate that 
CB2 is strongly and selectively expressed in microglia in 
diseases such as AD, MS and amyotrophic lateral sclero-
sis (ALS)37. Another study has indicated that CB2 reduces 
pro- inflammatory cytokine release from activated  
microglia in AD81 (fig. 2).

As for CB1, CB2 activation also stimulates adult neuro-
genesis82, and some evidence indicates a role for the 
receptor in regulating blood–brain barrier (BBB) perme-
ability83. Some studies have suggested that CB2 is expres-
sed at very low levels in healthy neurons and that their  
activation has the opposite effects to CB1 activation84,85. 
However, the strength of these studies is uncertain 
because some relied on pharmacological or immunologi-
cal tools that were later found to have low selectivity86,87. 

In addition, the mechanism by which CB2 alters neuro-
nal function is still undefined. One study has suggested 
that activation of postsynaptic CB2 reduces neuronal 
excitability in the CA3 and CA2 regions of the hippo-
campus through functional coupling with the sodium- 
bicarbonate transporter88. Developing CB2 agonists as 
safe drugs for neurological disorders might be difficult  
if it is confirmed that they alter mood and cognition.

Other endocannabinoidome receptors
The most studied of the receptors involved in the wider 
endocannabinoidome are TRPV1, PPARγ and PPARα, 
although some work has addressed the role of two orphan 
GPCRs, GPR55 and GPR18.

TRPV1 was thought not to have a function in the 
brain until it was found in GABAergic and glutamater-
gic terminals and neuronal somata in the hippocampus 
and cerebellum89,90. Demonstration that TRPV1 in these 
neurons generates Ca2+ influx and depolarization as it 
does in spinal or sensory neurons has been difficult, but 
its role in short- term and long- term synaptic plasticity 
is well established and has implications in the regula-
tion of mood, fear, memory, food intake, visual devel-
opment and locomotion91. TRPV1 is thought to increase 
excitability of central neurons, as suggested by studies 
in epilepsy models92,93. However, TRPV1 also mediates 
long- term depression through upregulation of AMPA 
receptor reuptake94 (fig. 2). Conversely, TRPV1 increases 
glutamatergic neurotransmission via microvesicle 
release from microglia, particularly in neuroinflamma-
tory conditions95, although its activation inhibits release 
of inflammatory cytokines from activated microglia96.

PPARα and PPARγ are expressed in neurons, astro-
cytes and microglia in the brain, where they have anti- 
inflammatory and neuroprotective effects during acute 
and chronic neuroinflammatory insults, such as brain 
trauma, ischaemia, AD and MS97. Experiments in mice 
without active forms of these receptors have provided 
insight into their physiological functions. For exam-
ple, both isoforms have been associated with ethanol 
consumption98, whereas PPARα activation by some  
N- acylethanolamines or N- oleoyl-glycine46,99 reduces 
nicotine preference. Additionally, strong evidence sug-
gests that PPARα reduces food intake100, whereas PPARγ 
is involved in neuronal differentiation101.

The role of GPR55 as an endocannabinoid receptor 
is controversial, but evidence suggests that its activation 
stimulates excitatory hippocampal neurons102. On this 
basis, GPR55 activation by endocannabinoidome medi-
ators, such as anandamide, 2-AG and palmitoylethanol-
amide, might be detrimental in epilepsy or conditions 
characterized by glutamate excitotoxicity103. Little infor-
mation is available on the role of GPR18 in brain phys-
iology. However, expression in microglia suggests that 
this receptor has a function in neuroinflammation104,105.

The endocannabinoidome and gut microbiota
The endocannabinoid system has a major role in regu-
lating myenteric neuron activity, vagal and sympathetic 
nerve function, and the release of gastrointestinal neuro-
peptides (ghrelin and cholecystokinin-8), which in turn 
modulate endocannabinoid levels106. Another aspect of 

Fig. 1 | The expanded endocannabinoid system. a | The endocannabinoids anandamide 
and 2-arachidonoylglycerol (red boxes) are often accompanied by their congeners,  
the N- acylethanolamines and the 2-acylglycerols (dark blue boxes). These congeners  
share biosynthetic pathways and enzymes with the endocannabinoids (pale blue for  
N- acylethanolamines and yellow for 2-acylglycerols) and modulate targets other 
than cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), such as transient 
receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome 
proliferator- activated nuclear receptor- α (PPARα) and PPARγ, T- type Ca2+ (Cav3.2) channels, 
and orphan G protein- coupled receptors such as GPR18, GPR55, GPR110 and GPR119. 
The biosynthetic precursors of 2-acylglycerols also have their own targets, such as protein 
kinase C (PKC), GPR55 and lysophosphatidic acid receptors 1–3 (LPA1–3). Other long- 
chain fatty acid amides, such as primary amides, lipoamino acids and some N- acyl-neuro-
transmitters have also been identified as elements of the expanded endocannabinoid 
system with promiscuous targets, whereas no receptor for N- acyl-serines has been 
identified. Distinct biosynthetic pathways exist for different lipoamino acids and  
N- acyl-neurotransmitters (pale green boxes). Intracellular targets are shown as orange 
rounded boxes. Plant cannabinoids modulate several targets of the expanded 
endocannabinoid system or endocannabinoidome. b | The endocannabinoids, their 
congeners and the various long- chain fatty acid amides often share inactivating enzymes, 
although these enzymes have different substrate selectivity. Fatty acid amide hydrolase 
breaks down long- chain N- acylethanolamines, N- acyltaurines and N- acylglycines;  
fatty acid amide hydrolase 2 (so far found only in human tissues) has a preference for 
oleoylethanolamide (OEA) and linoleoylethanolamide (LEA); N- acylethanolamine acid 
amidohydrolase (NAAA) recognizes saturated N- acylethanolamines, such as palmitoyl-
ethanolamide (PEA); monoacylglycerol lipase is specific for long- chain 2-acylglycerols, 
especially those that are unsaturated; and α,β- hydrolases 6 and 12 also recognize long- 
chain 2-acylglycerols and have non- endocannabinoidome ester substrates. In addition, 
some oxidizing enzymes of the arachidonate cascade, such as cyclooxygenase 2 (COX2), 
and various lipoxygenases (LOX) recognize the polyunsaturated fatty acid- containing 
endocannabinoid congeners. Several metabolic products of these congeners have their 
own receptors, whereas the LOX and cytochrome P450 oxygenase (P450) derivatives  
of endocannabinoids can still activate CB1 and CB2 receptors. Solid arrows denote 
modulation or interaction with protein targets, dashed arrows denote metabolic 
transformation. 5-HT, 5-hydroxytryptamine; Alt4, splicing variant 4 of the FP receptor ; 
CBD, cannabidiol; CBDA , cannabidiolic acid; CBDV, cannabidivarin; COMT, catechol  
O- methyltransferase; DHEA , N- docosahexaenoyl-ethanolamine; GDE1, glycero-
phosphodiester phosphodiesterase 1; lyso- PLD, lysophospholipase D; MAGK , 
monoacylglycerol kinase; NAPE- PLD, N- acyl-phosphatidylethanolamine- specific 
phospholipase D; PAM, peptidyl- glycine α- amidating monooxygenase; P2Y6, P2Y 
purinoceptor 6; PG, prostaglandin; PL A , phospholipase A ; PLC, phospholipase C; PTN22, 
tyrosine- protein phosphatase non- receptor type 22; THC, Δ9-tetrahydrocannabinol; 
THCA , Δ9-tetrahydrocannabinolic acid; THCV, Δ9-tetrahydrocannabivarin. Adapted  
from ref.340, Springer Nature Limited.
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the gut–brain axis that is becoming better appreciated  
is the effects of dysbiosis on endocannabinoid signalling,  
and the role of endocannabinoid signalling in dysbio-
sis107. CB1 has been implicated in dysbiosis- induced 
increases in intestinal permeability, the ensuing sys-
temic inflammation, and modulation of the microbiota 
composition in a way that favours dysmetabolism108–110. 
Conversely, evidence suggests that CB2 activation partly 

mediates the analgesic effects of probiotics against 
visceral pain111.

Endocannabinoidome receptors, including TRPV1, 
GPR119 and PPARα, reduce intestinal permeability, 
and altered levels of their endocannabinoidome lig-
ands could mediate the negative effects of dysbiosis and 
the beneficial effects of the commensal microorgan-
ism Akkermansia muciniphila on increased intestinal 

Table 1 | Components of the endocannabinoid system and the endocannabinoidome and their role

Component type Component role

Endocannabinoid system

Receptors Cannabinoid receptor 1 (CB1) Receptor for THC and endocannabinoids

Cannabinoid receptor 2 (CB2) Receptor for THC and endocannabinoids

Enzymes Fatty acid amide hydrolase (FAAH) Hydrolysis of anandamide (and other N- acylethanolamines), fatty 
acid primary amides, N- acyltaurines, N- acylglycines and possibly 
2-AG

N- acylphosphatidylethanolamine-specific 
phospholipase d- like hydrolase (NAPE- PLD)

Biosynthesis of anandamide and other N- acylethanolamines

Monoacylglycerol lipase (MAGL) Hydrolysis of 2-AG and other monoacylglycerols

Diacylglycerol lipase α and β (DAGLα and DAGLβ) Biosynthesis of 2-AG and other monoacylgycerols from 
diacylglycerols

Endocannabinoidome

Receptors Peroxisome proliferator- activated receptor- α (PPARα) Activated by palmitoylethanolamide, oleoylethanolamide and 
N- oleoyl-glycine

Orphan GPCR 119 (GPR119) Activated by some endocannabinoid congeners

Orphan GPCR 55 (GPR55) Activated by palmitoylethanolamide

Transient receptor potential cation channel  
subfamily V member 1 (TRPV1) channel

Activated by anandamide, 2-AG and some of their congeners

Peroxisome proliferator- activated receptor- γ (PPARγ) Activated by anandamide at micromolar concentrations and by 
some oxidation products of 2-AG

Cav3.2 (T- type) Ca2+ channel Inhibited by anandamide and several unsaturated long- chain fatty 
acid amides

Transient receptor potential cation channel  
subfamily M member 8 (TRPM8) channels

Inhibited by anandamide and N- arachidonoyl-dopamine

GABAA receptors Activated by 2-AG

Endocannabinoid 
congener mediators

N- acylethanolamines (e.g. palmitoylethanolamide, 
oleoylethanolamide, docosahexaenoylethanolamide)

Agonists of PPARα and/or TRPV1 and/or GPR55 and/or GPR119; 
docosahexaenoylethanolamide activates GPR110

2-Acylglycerols Some are agonists for TRPV1 and/or GPR119

Other long- chain fatty 
acid amide- derived 
mediators

Primary fatty acid amides (e.g. oleamide) Oleamide is a sleep- inducing factor with multiple targets

N- acyl-amino acids (e.g. N- acylglycines, N- acylserines, 
N- acyltaurines)

Some N- acylglycines activate GPR18 and/or PPARα; some  
N- acyl-taurines activate TRPV1 and TRPV4

N- acyl-neurotransmitters (e.g. N- acyl-serotonins, 
N- acyl-dopamines)

Unsaturated N- acyl-serotonins are TRPV1 antagonists and FAAH 
inhibitors; N- arachidonoyl-dopamine is a dual CB1 and TRPV1 
agonist

Endocannabinoid oxidation products (e.g. 
12-lipoxygenase, 15-lipoxygenase and cytochrome 
P450 oxygenase products, prostamides and 
prostaglandin glycerol esters)

12-Hydroxy- anandamide, 15-hydroxy- anandamide and 5,6-epoxy- 
anandamide activate cannabinoid receptors; prostamide F2α 
activates a heterodimer of the prostaglandin F receptor and a 
splice variant of the same receptor ; prostaglandin E2 glycerol ester 
activates the P2Y6 purinergic receptor

Enzymes (those 
most specifically 
belonging to the 
endocannabinoidome)

Glycerophosphodiester phosphodiesterase 1 (GDE1) 
and α/β- hydrolase 4 (ABHD4)

Alternative to NAPE- PLD in the biosynthesis of 
N- acylethanolamine

Ca2+-dependent and Ca2+-independent  
N- acyltransferases (including phospholipase A2  
group IVE and phospholipase A/acyltransferase 1)

Produce N- acylphosphatidylethanolamines for  
N- acylethanolamine biosynthesis

Peptidyl- glycine α- amidating monooxygenase (PAM) 
and glycine N- acyltransferase-like protein 3 (GLYATL3)

Act in sequence in the biosynthesis of N- acylglycines and primary 
fatty acid amides

2-AG, 2-arachidonoyl- glycerol; GPCR , G protein- coupled receptor ; THC, Δ9-tetrahydrocannabinol.
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permeability and the ensuing systemic inflammation112. 
Given the ever- increasing evidence that alterations in 
the gut microbiota are a cause of comorbidity in chronic 
neuro inflammatory conditions and are related to nutri-
tional and metabolic issues113, the importance of the 
endocannabinoidome–gut microbiome axis in neurology  
deserves further investigation.

Involvement in neurological disorders
Endocannabinoidome signalling is altered in experi-
mental models of neurological disorders and in plasma 
and post- mortem brain samples from humans with 
these disorders (Supplementary Table 1). Such alter-
ations are often difficult to interpret owing to the 
number of endocannabinoidome mediators involved 
and the multi- faceted nature of the changes. Studies in 
animal models suggest that in neurological disorders, 
endocannabinoids may no longer be tightly regulated, 
pro- homeostatic mediators but become dysregulated 
and contribute to disease in different ways depending 
on the location and timing of their production and on 
the stage of the disease17. Consequently, cannabinoid 
receptor antagonists and agonists can produce beneficial 
effects; for example, CB2 agonists and antagonists can 
both be beneficial in animal models of MS15. The reali-
zation that enhancers and blockers of endocannabinoid 
signalling could be used in treatment of the same disor-
der is both challenging and exciting for drug developers. 
Exploitation of this opportunity requires development of 
clinically relevant animal models to investigate the ‘yin 
and yang’ of the system. Ways in which the endocanna-
binoidome is affected in various neurological conditions 
in experimental models and humans are outlined below, 
ordered according to the amount of preclinical evidence 
available for each disorder.

Parkinson disease
CB1 and CB2 receptors. Animal models of PD are gen-
erated by either reproducing degeneration of dopamin-
ergic neurons in the substantia nigra with neurotoxins 
or by manipulating genes that encode PD- associated 
proteins, such as parkin or α- synuclein. Biphasic dys-
regulation of CB1 (hypoactivity in pre- symptomatic 
and early PD and hyperactivity at later stages) occurs 
in different models, including α- synuclein and parkin 
knockout animals114, 6-hydroxydopamine (6-OHDA)-
treated rats, and a monkey model of treatment- induced 
dyskinesia115,116. PET and MRI have shown that CB1 lev-
els are increased in patients with PD117,118, and imaging 
in rats and patients has revealed CB2 upregulation118,119.

Whether alterations in CB1 levels in PD are protec-
tive or maladaptive is unclear. In marmosets and rats 
with toxin- induced lesions (1-methyl-4-phenyl-1,2,3, 
6-tetrahydropyridine (MPTP) treatment in marmosets 
and 6-OHDA treatment in rats), CB1 agonists ame-
liorated levodopa- induced dyskinesia120,121. However, 
CB1 antagonists were also beneficial in MPTP- lesioned 
marmosets that had been treated with levodopa, in 
6-OHDA- treated rats with severe nigral lesions and 
in MPTP- treated rhesus monkeys122–124. The outcome of 
modulation might depend on the severity of the lesion, 
which might cause preferential localization of CB1 to 

glutamatergic or GABAergic terminals (fig. 3), although 
this mechanism is speculative.

CB2 receptor modulation has produced more pre-
dictable results. Activation of CB2 reduced dopamine 
depletion in 6-OHDA- treated rats125 and counteracted 
MPTP- induced neurotoxic and neuroinflammatory 
events in mice83,126. Moreover, CB2 is upregulated 
in lipopolysaccharide- treated rats, and activation of 
these receptors reduced expression of inflammatory 
markers119.

Endocannabinoids. In most studies, endocannabi-
noid levels are increased in PD. Abnormal endocan-
nabinoid levels in the cerebrospinal fluid (CSF) of 
untreated patients with PD and in 6-OHDA- treated 
and reserpine- treated rats were reversed by levodopa 
treatment122,127–130, suggesting that the changes are related 
to disease symptoms. However, these observations are 
not easy to interpret, and inhibition of endocanna-
binoid metabolic enzymes has provided more insight. 
In MPTP- treated mice, MAGL inhibition led to CB2-
mediated neuroprotection131. Blockade of FAAH in the 
same model improved motor behaviour via CB1 and/or 
CB2 activation but had no neuroprotective effects39. In 
6-OHDA- treated rats, FAAH blockade reduced dyskine-
sia only when administered with a TRPV1 antagonist120, 
suggesting that levodopa- induced dyskinesia is wors-
ened by activation of TRPV1 by FAAH substrates. The 
neuroprotective effects of FAAH inhibitors could result 
from increased tissue levels of non- endocannabinoid 
N- acylethanolamines, such as palmitoylethanolamide,  
administration of which reduced MPTP- induced 
neuro toxicity and neuroinflammation in mice, in 
part via PPARα activation132. In 6-OHDA- treated rats, 
the PPARα agonist oleoylethanolamide (OEA) had 
TRPV1-mediated antidyskinetic effects133. The fact 
that TRPV1 antagonism and activation can have sim-
ilar effects on levodopa- induced dyskinesia could be 
explained by the fact that TRPV1 agonists immediately 
desensitize the channel, an effect also seen in models of 
epilepsy (see Seizures and epilepsy below).

Effects of phytocannabinoids. In studies in 6-OHDA- 
treated and lipopolysaccharide- treated rats, THC, CBD 
and Δ9-tetrahydrocannabivarin (THCV) had anti- 
parkinsonian effects125,134,135. The investigators suggested 
that these effects were due to the antioxidant properties 
of these phytocannabinoids and, in the case of THCV, 
to CB2 activation and CB1 antagonism.

Clinical studies. In an exploratory, double- blind trial 
of CBD in patients with PD, the highest dose tested 
(300 mg daily) improved quality of life136. In another 
pilot study, both THC and nabilone, a synthetic ana-
logue of THC, reduced levodopa- induced dyskinesia in 
PD137. Finally, ultramicronized palmitoylethanolamide 
produced beneficial effects as an adjuvant therapy in 
patients with advanced PD138. Palmitoylethanolamide 
is the only endocannabinoidome mediator for which 
clinical results are available, and its efficacy in several 
types of neuropathic pain has warranted its marketing 
as a ‘special food with medical purposes’139.

Nature reviews | Neurology

R e v i e w s



Cytokines

GPR18

TRPV1

Microglia

CB2

↑Ca2+

Postsynapse

PLC

PLC

DAG

IP
3

Ca2+ influx

Astrocyte

Gliotransmitters

Ca2+

Glutamate

Glutamate

DSE Inhibitory
synapse

Excitatory
synapse

Excitatory
synapse

2

1

1 2

3

DAGL

DAGL
DAG

GABA

Ca2+

Ca2+

GPR55

CB1

CB1
(G

q/11
)

(G
i/0

)

(G
i/0

)

Ca2+

mGluR5
2-AG

AMPA

2-AG

Ca2+

DSI

TRPV1

a

b
Presynapse

Postsynapse

Presynapse

c

Inhibitory
presynapse

Post synapse

Astrocyte
DAGLα

TRPV1

CB1

mGluR5
(G

q/11
)

GABA
receptor

AMPA

Ca2+

influx

Ca2+

influx

(Gα12/13
)

www.nature.com/nrneurol

R e v i e w s



Alzheimer disease
CB1 and CB2 receptors. Several experimental models of 
AD that mimic accumulation of amyloid- β (Aβ) peptides, 
hyper- phosphorylation of tau or genetic dysfunctions 
have been widely employed to search for new treatments. 
Studies of CB1 in these models have produced varying 
results. CB1 levels were unaltered in Tg2576 transgenic 
mice, which overexpress a mutant form of amyloid 
precursor protein (APP), and in APP/PS1 mice, which 
express the same mutant APP and mutant presenilin 1 
(ref.140). However, CB1 localization and signalling were 
altered in presymptomatic Tg2576 mice141.

CB1 and/or CB2 agonists ameliorated memory 
and/or cognitive impairments in Tg2576 mice, APP/PS1 
mice142 and rodents that had received intracerebral injec-
tions of Aβ143,144. Conversely, CB1 antagonism protected 
against Aβ- induced memory impairment in mice13, 
suggesting that activation of CB1 by endocannabinoids 
inhibits neurotoxicity but worsens its long- term conse-
quences (such as reduced acetylcholine signalling) that 
lead to cognitive impairment. CB1-related findings in 
the brains of patients with AD have also been variable. 
Downregulation, upregulation and no alteration of CB1 
have all been reported145–148.

Studies of CB2 in AD consistently indicate its 
upregulation. Marked increases in CB2 levels have 
been found in microglia in APP/PS1 mice and in mice 
that have received intracerebral injection of Aβ142,149, 
suggesting that CB2 protects against AD- associated 
inflammation. In various in vitro and in vivo AD 
models, CB2 activation reduced levels of neurotoxic 

factors and pro- inflammatory mediators produced by 
reactive astrocytes and microglial cells143,150–152, stimu-
lated microglial proliferation and migration153, and 
decreased Aβ levels. Accordingly, CB2 receptor knock-
out in amyloidogenic J20 mice (another AD model) 
led to increased levels of Aβ154. In humans with AD, 
CB2 is upregulated in neuritic clear plaque- associated 
astrocytes and microglia, whereas CB1 expression is 
unchanged143,155.

Endocannabinoids. In 5×FAD mice, which co- express 
five common AD- associated mutations, levels of anan-
damide and 2-AG were unchanged156. In mice with 
Aβ- induced neurotoxicity and cognitive impairment, 
hippocampal levels of 2-AG were increased in the early 
stages of disease and levels of anandamide were decreased 
in later stages157. These findings are in partial agreement 
with those in human AD34,38. In one post- mortem study 
of patients with AD, levels of anandamide were reduced 
in the midfrontal and temporal cortex and inversely 
correlated with Aβ accumulation34. This observation 
agrees with a previous finding that FAAH expression 
and activity was increased in neuritic plaque- associated 
astrocytes and microglia from post- mortem brains from 
patients with AD155. In another post- mortem study, 
2-AG- mediated signalling was increased in the hippo-
campus of patients with AD, and DAGLα levels were 
increased near amyloid plaques38. Increased plasma 
levels of 2-AG have also been observed in patients with 
AD, particularly those with ischaemic heart disease or 
cerebral leukoaraiosis35.

In 5×FAD mice, pharmacological elevation of 2-AG 
levels with an MAGL inhibitor prevented neuroinflam-
mation, decreased neurodegeneration and improved 
memory158, but these effects were independent of CB2 
(ref.159). MAGL inhibition also reduced microglia- 
mediated neuroinflammation in APdE9 mice, another 
genetic model of AD160. Genetic inactivation of MAGL 
produced similar effects in APP/PS1 mice by reducing 
prostaglandin production57.

Genetic ablation of FAAH in 5×FAD mice reduced 
Aβ levels, neuritic plaques and gliosis independent 
of CB1 (ref.156) but worsened the neuroinflammatory 
effects of Aβ in astrocytes in vitro via a mechanism that 
involved PPARα, PPARγ and TRPV1, but not CB1 or 
CB2 (ref.44). The neuroprotective effects of FAAH inhi-
bition might be mediated via other substrates of the 
enzyme, such as palmitoylethanolamide, administra-
tion of which reduced toxicity and reversed memory 
deficits in a PPARα- dependent manner in Aβ- treated 
rats161 and counteracted astroglyosis and improved 
neuronal viability in a triple transgenic model of AD162. 
Inhibition of a putative endocannabinoid membrane 
transporter that facilitates endocannabinoid reuptake 
by cells from the extracellular medium had beneficial 
and deleterious effects on memory deficits in mice with 
Aβ- induced neurotoxicity and cognitive impairment; 
whether the effects were beneficial or exacerbating 
depended on the timing of administration157, high-
lighting the time dependence and site dependence  
of endocannabinoid signalling in the aetiopathology of 
AD (fig. 3).

Fig. 2 | Neurophysiological roles of the expanded endocannabinoid system.  
a | The role of endocannabinoid retrograde signalling in short- term plasticity ,  
known as depolarization- induced suppression of excitation (DSE) or depolarization- 
induced suppression of inhibition (DSI). Two events can induce production of the 
endocannabinoid 2-arachidonoyl glycerol (2-AG). Postsynaptic step depolarization or  
an action potential induces Ca2+ influx via voltage- gated Ca2+ channels (stimulus 1) that  
is amplified by metabotropic receptor- induced intracellular Ca2+ release. Alternatively , 
brief tetanic stimulation of excitatory afferents (stimulus 2) leads to glutamate release, 
which stimulates the metabotropic glutamate receptor (mGluR5), thereby initiating 
2-AG biosynthesis. AMPA receptor activation can contribute to this effect. Other 
Gq/11-coupled receptors can also activate phospholipase C (PLC) and diacylglycerol 
lipase (DAGL), which are required for synthesis of 2-AG, and induce inositol- 
trisphosphate (IP3) production that causes intracellular calcium mobilization. 2-AG 
activates the presynaptic cannabinoid receptor 1 (CB1), leading to depression of 
neurotransmitter release. b | A transmission electron micrograph (L.C., unpublished 
observations) of the tripartite synapse that shows DAGLα immunogold labelling (arrows) 
at the postsynaptic membrane of an active zone receiving a symmetrical synapse from a 
putative inhibitory neuron (orange) and enveloped by astroglial processes (green).  
c | The physiological role of the endocannabinoidome in modulating synaptic plasticity  
at the tripartite synapse. In addition to conventional intercellular signalling (step 1), 
postsynaptic transient receptor potential cation channel subfamily V member 1 (TRPV1) 
can reduce excitatory synaptic transmission by increasing AMPA receptor reuptake  
and mediating TRPV1 long- term depression. Activation of mGluR5 instead produces 
CB1-mediated retrograde long- term depression. Conversely , presynaptic activation of 
TRPV1 and Gα12/13-coupled receptor GPR55 contribute to presynaptic Ca2+ influx, thereby 
facilitating synaptic transmission. 2-AG also amplifies Ca2+ influx via CB1 in astrocytes 
(step 2), thereby promoting release of gliotransmitters (for example, glutamate) into the 
synaptic cleft and amplification of 2-AG signalling. By binding CB2 and/or GPR18 and/or 
TRPV1 on microglia (step 3), endocannabinoids and related mediators modulate the 
release of cytokines, which might participate in synaptic activity and pruning. DAG, sn-1 
acyl-2-arachidonoyl- glycerol; GPR , G protein- coupled receptor. Parts a and c (left) 
adapted with permission from ref.341, Elsevier.
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Effects of phytocannabinoids. Experiments in in vitro 
and in vivo models of Aβ- induced neurotoxicity have 
shown that CBD can protect against Aβ- induced insults, 
as it reduces oxidative stress, tau phosphorylation and 
expression of inducible nitric oxide synthase via the 
WNT–β- catenin pathway, which mediates several of 
the neurotoxic effects of Aβ163. Moreover, CBD amelio-
rated cognitive impairments and prevented development 
of a social recognition deficit in APP/PS1 mice164. Finally, 
CBD and THC together preserved memory function and 

reduced astrogliosis and inflammation in APP/PS1 mice, 
and the combination was more effective than either  
cannabinoid alone165.

Clinical studies. Clinical tests of cannabinoids in patients 
with AD are limited. THC and nabilone have been tested 
in controlled clinical trials for the treatment of some 
consequences and comorbidities of AD, such as anxi-
ety, agitation and depression166–169. THC was ineffective 
against neuropsychiatric symptoms, although it showed 
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activation of presynaptic cannabinoid receptor 1 (CB1) in some glutamatergic neurons is protective in acute and chronic 
neurodegenerative disorders. However, in chronic conditions, CB1 signalling can lose spatial selectivity , spread over other 
CB1 populations, such as those in other neurons, or in GABAergic terminals and astrocytes in tripartite synapses; in the 
latter two cases, CB1 signalling contributes to excitotoxicity. Likewise, endocannabinoid interactions with presynaptic  
T- type Ca2+ channels (Cav3.2) and G protein- coupled receptor 55 (GPR55) in neurons, and with transient receptor potential 
cation channel subfamily V member 1 (TRPV1) in neurons or inflammatory microglia can counteract or contribute to 
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Part b, left, adapted from ref.342, Springer Nature Limited. Part b, right, adapted from ref.343, Springer Nature Limited.
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some beneficial effects on balance and gait and was well 
tolerated, thus warranting further studies with higher 
dosages. Nabilone reduced the severity of agitation.

Huntington disease
CB1 and CB2 receptors. Huntington disease (HD) is 
an inherited disorder that causes death of dopaminer-
gic neurons in the globus pallidus, leading to progres-
sive locomotor impairment and mood and/or mental 
impairments. Experimental models of HD reproduce 
either the neurodegeneration, via injection of neuro-
toxins into the globus pallidus, or its cause — expansion 
of CAG triplet repeats in the gene that encodes the hun-
tingtin protein. Substantial loss of CB1 has been seen 
in different animal models with different CAG repeat 
lengths (R6/1, R6/2 and HD94 mice), suggesting that 
reduced endocannabinoid signalling is associated with 
HD severity and progression170–172. Similar changes have 
been seen in post- mortem samples from patients with 
HD173. The use of conditional CB1 knockout mice and 
the designer receptor exclusively activated by designer 
drug (DREADD) pharmacogenetic technique showed 
that CB1 exerts its neuroprotective effects at glutama-
tergic synapses174,175. This mechanism is expected given 
that endocannabinoids mediate retrograde inhibition 
of glutamate excitotoxicity at excitatory terminals (see 
the discussion above on the physiological roles of the 
endocannabinoidome). Accordingly, in animal models 
of striatal damage, activation of CB1 on corticostriatal 
projections by inhibition of glutamatergic transmis-
sion selectively protect medium spiny neuron popula-
tions that are damaged176. In addition, THC attenuated 
striatal degeneration in R6/2 mice independent of 
CB1, and genetic deficiency of CB1 worsened disease 
signs in N171-82Q transgenic mice (which express an 
N- terminal fragment of huntingtin with 82 glutamine 
repeats) and after 3-nitropropionic intoxication177.

As in other neurodegenerative disorders, CB2 expres-
sion is increased in post- mortem brains from patients 
with HD and in experimental models, including R6/2 
mice178,179 and malonate- lesioned rats180. Genetic abla-
tion of CB2 exacerbates disease in R6/2 mice, BACHD 
mice (which express full- length, human, mutant hun-
tingtin)178,179 and malonate- lesioned rats180. An agonist 
of CB1 and CB2 receptors prevented motor impairment 
and the loss of medium spiny neurons in R6/1 mice181.

Endocannabinoids. Reduced striatal levels of anan-
damide and 2-AG have been observed in 3-nitropropionic- 
lesioned rats and R6/2 mice182,183. In R6/1 mice, 2-AG levels 
were increased and anandamide levels were decreased172. 
In humans with HD, FAAH activity is decreased and, 
consequently, anandamide levels are increased in 
lymphocytes184.

Pharmacological modulation of endocannabinoid 
metabolism has been shown to protect neurons in 
models of HD. Inhibitors of endocannabinoid cellular 
reuptake had anti- hyperkinetic effects in the 3-nitropro-
pionic model, although mostly via activation of TRPV1 
(ref.185). A DAGL inhibitor ameliorated (and an MAGL 
inhibitor exacerbated) malonate- induced damage of 
striatal neurons by reducing cyclooxygenase 2-mediated 

oxidation of 2-AG to form the pro- inflammatory  
prostaglandin E2 glycerol ester50.

Effects of phytocannabinoids. Studies in the 3-nitro-
propionic model of HD have shown that THC134, 
CBD186 and cannabigerol187 can protect striatal neu-
rons. Similar effects were seen with a nabiximols- like 
combination of THC and CBD in malonate- treated and 
3-nitropropionic- treated rats; the effects were medi-
ated by CB1 and/or CB2 in the malonate model and 
independent of CB1 and CB2 in the 3-nitropropionic 
model188.

Clinical studies. In one trial in 26 patients with HD, 
nabiximols was well tolerated but did not improve dis-
ease189, although in a subsequent study of seven patients 
with early- onset HD, it reduced dystonia190. CBD has 
been tested in 15 patients with HD, but no therapeutic 
effect was seen, even with a high dose (700 mg daily)191. 
Nabilone has also been tested for the treatment of 
motor symptoms in patients with HD, with contrasting  
results190,192,193.

Multiple sclerosis
CB1 and CB2 receptors. Complex alterations in CB1 
and CB2 expression occur in patients with MS and in 
experimental models. These models include experimen-
tal autoimmune encephalomyelitis (EAE) and Theiler 
murine encephalomyelitis virus- induced demyelinating 
disease (TMEV- IDD), which recreate the brain and spi-
nal cord demyelination that occurs in MS, and chronic 
relapsing EAE (CREAE), which also reproduces the 
relapsing–remitting MS phenotype194–198. Several lines 
of evidence suggest that activation of CB1 and CB2 
has beneficial effects. In CREAE mice, CB1 agonists 
ameliorated tremor and spasticity, whereas antagonists 
worsened them199,200. In TMEV- IDD mice, CB1 and CB2 
agonists improved clinical scores via immunomodula-
tory and anti- inflammatory mechanisms201,202. In lym-
phocytes isolated from EAE mice or patients with MS, 
CB2 activation suppressed immune responses203,204. 
Finally, genetic ablation of CB1 or CB2 caused more 
severe clinical manifestations in various models203,205.

Endocannabinoids. In relapsing CREAE mice, anan-
damide and/or 2-AG levels were increased in the 
brain or spinal cord, but only anandamide levels were 
increased in EAE mice and only 2-AG levels in TMEV- 
IDD mice194,197,200,206. In two studies in patients with MS, 
blood levels of endocannabinoids were increased and 
CSF levels were decreased, although in other studies, 
anandamide levels were increased in the CSF as well as 
in peripheral lymphocytes and the brain204,206,207. These 
findings suggest that modulation of endocannabinoid 
signalling is an adaptive response in MS to counteract 
symptoms and progression. Accordingly, inhibitors of 
the putative endocannabinoid transporter194,199,200,208,209, 
FAAH200,210, MAGL210,211 and the monoacylglycerol lipase 
ABHD6 (ref.212), all of which increase endo cannabinoid 
levels, had beneficial effects in various models. In 
addition, CNS levels of palmitoylethanolamide were 
increased in models of MS197,200, but decreased in the CSF 
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of patients with MS207, and administration of exogenous 
palmitoylethanolamide transiently ameliorated spastic-
ity in CREAE mice200 and reduced motor disability and 
inflammation in TMEV- IDD mice197. Similarly, early 
administration of palmitoylethanolamide with CBD 
ameliorated EAE in mice213. Endocannabinoids and pal-
mitoylethanolamide also act via TRPV1 channel activa-
tion and desensitization. Interestingly, in patients with 
MS, the presence of the G allele of the SNP rs222747 of 
TRPV1, which causes increased expression and function 
of TRPV1, is associated with lower CSF levels of TNF, 
indicating anti- inflammatory effects of this channel on 
microglia96. This observation suggests that TRPV1 could 
be a target for the treatment of MS.

Effects of phytocannabinoids. CBD ameliorates EAE in 
mice214. The underlying mechanism includes activation 
of PI3K–AKT–mTOR signalling, reduction of pro- 
inflammatory mediators, and PPARγ activation215. In 
TMEV- IDD mice, CBD had immunoregulatory effects 
via adenosine 2A receptor activation and downregu-
lation of vascular cell adhesion molecule-1 (ref.216). In 
CREAE mice, CBD potentiated the anti- spasticity effects 
of THC (see Clinical studies below)217.

Clinical studies. Nabiximols is approved for the treat-
ment of neuropathic pain and treatment-resistant 
spasticity in patients with MS in several countries4, 
although not yet by the FDA. Clinical practice has con-
firmed that nabixi mols is useful for MS spasticity215 as 
an add- on therapy with other anti- spastic agents218. 
Neurophysiological studies have revealed that nabixi-
mols has beneficial effects on cortical and spinal excit-
ability, metaplastic effects on the motor cortex (but not 
on upper motor neurons) and — relevant to its analgesic 
effects — improves sensory responses and laser- evoked 
potentials219–222. In discontinuation studies in an Italian 
population of patients with MS, ~40% of patients were 
resistant to the anti- spastic action of the drug223,224.

Some evidence is emerging that nabiximols has 
immunomodulatory effects in MS, raising the possibi-
lity that it could be used to alter disease progression225. 
This possibility is supported by studies in rodents that 
have demonstrated benefits of THC via CB2 activation 
and of CBD via multi-target anti-inflammatory effects 
(see CB1 and CB2 receptors above). Ultramicron-
ized palmitoylethanolamide has also been tested in 
patients with MS. The treatment reduced circulating 
levels of pro-inflammatory cyto kines and reduced 
the adverse effects of interferon-β1a treatment for  
relapsing–remitting MS226.

Amyotrophic lateral sclerosis
CB1 and CB2 receptors. ALS is an incurable neuro-
degenerative disorder of motor neurons. The cause is 
usually unknown, so experimental models are limited. 
In SOD1 mice — a controversial model of ALS in which 
mice overexpress superoxide dismutase 1 (SOD1)227 — 
CB1 expression was downregulated228 or unchanged229, 
and genetic deletion of the receptor extended lifespan 
with no effect on disease onset41, so CB1 activation is 
unlikely to be beneficial. CB2 was upregulated in the 

spinal cord of SOD1 mice227,230 and in activated microglia 
in the spine of TAR- DNA binding protein 43 (TDP43) 
mutant mice231, another ALS model developed on the 
basis that mutant TDP43 aggregates in the brain and spi-
nal cord of patients with familial ALS. CB2 is also upreg-
ulated in post- mortem primary motor cortex and spinal 
cord samples from patients with ALS232. Furthermore, 
a selective CB2 agonist slowed disease progression in 
SOD1 mice230, and these findings together suggest that 
CB2 has a protective role in ALS.

Endocannabinoids. In SOD1 mice, anandamide and 
2-AG concentrations are increased in the lumbar spinal 
cord41,233. Genetic knockout of FAAH in SOD1 mice pre-
vented development of symptoms without prolonging 
survival41, and administration of an MAGL inhibitor 
delayed disease onset, slowed progression and increased 
survival229, suggesting that the increases in anandamide 
and, in particular, 2-AG are neuroprotective. In TDP43 
mutant mice, endocannabinoid levels are unchanged231.

Phytocannabinoids and clinical studies. Some evidence 
suggests that phytocannabinoids and multi- target endo-
cannabinoidome mediators might be useful in ALS. In 
human gingiva- derived mesenchymal stromal cells, CBD 
modulated expression of genes associated with ALS234, 
and nabiximols- like combinations of THC and CBD 
slightly delayed disease progression in SOD1 mice227.

In Xenopus oocytes transplanted with muscle mem-
branes from selected patients with ALS, palmitoylethan-
olamide reduced desensitization of acetylcholine- evoked 
currents after repetitive neurotransmitter application235. 
Given that ALS involves defects in the expression of 
acetylcholine receptors in skeletal muscle even in the 
absence of motor neuron anomalies, this observation 
suggests that palmitoylethanolamide could be benefi-
cial in this disease. Accordingly, in patients with ALS, 
palmitoylethanolamide slowed reductions in forced vital 
capacity over time — suggesting that it can improve pul-
monary function in this disease — and improved the 
clinical condition of one patient235,236.

Traumatic brain injury
CB1 and CB2 receptors. Traumatic brain injury (TBI) 
is the most common cause of epilepsy in people aged 
>35 years. Experimental models of TBI involve subject-
ing animals to head impacts to mimic mild, moderate or 
severe brain injury. In a porcine model of TBI, CB1 was 
over- expressed after injury237. Use of selective and unselec-
tive CB2 agonists and CB1 antagonists in mice and studies 
of CB1 receptor knockout mice238–240 have suggested that 
targeting these receptors could have therapeutic potential.

Endocannabinoids. In a mouse model of TBI, levels of 
2-AG in the brain hemisphere ipsilateral to injury were 
increased between 1 h and 24 h after injury241. In the 
same model, administration of 2-AG protected the BBB, 
reduced inflammation and oedema and improved clin-
ical recovery via CB1-mediated mechanisms238,241,242. In 
another mouse model, levels of anandamide, but not 
2-AG, were increased in the ipsilateral hemisphere 3 days 
after TBI243. Inhibition of endocannabinoid degradation 
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by blocking FAAH, MAGL or ABHD6 reduced neuro-
degeneration and inflammation, protected BBB integrity 
and improved motor impairments, memory deficits and 
anxiety behaviour in different TBI models243–246.

In addition to classic endocannabinoids, several 
endocannabinoidome mediators seem to be involved 
in TBI. In mouse models, palmitoylethanolamide and 
N- arachidonoyl-l- serine had beneficial effects in TBI, 
including a reduction in oedema, gliosis and behavioural 
deficits and induction of neurogenesis247,248. In addition, 
N- oleoyl-glycine was increased in the insular cortex of 
mice with mild injury, and reduced nicotine reward 
and withdrawal effects, possibly explaining previously 
reported reductions in nicotine dependence in smokers 
after mild TBI99. Finally, TRPV1 antagonism attenuated 
BBB disruption after TBI in a cortical impact injury 
model in mice249.

Clinical studies. In several studies in experimental TBI, 
dexanabinol (also known as HU-211) — an enanti-
omer of the ultra- potent synthetic CB1 and CB2 ligand 
HU-210 that is inactive at cannabinoid receptors — 
exhibited potent neuroprotective activity, probably by 
inhibiting the NMDA receptor250. On this basis, the drug 
was tested in a phase III randomized, placebo- controlled 
clinical trial, but the results were negative251. Despite the 
good safety profile of this compound, studies with higher 
doses were never conducted.

Stroke and neonatal ischaemia
CB1 and CB2 receptors. Activation of CB1 protects 
against acute stroke through various mechanisms, 
including attenuation of BBB disruption, reductions in 
brain oedema and infarcted tissue volume, and induc-
tion of hypothermia, effects that are all usually reversed 
by CB1 antagonists252–254. Stroke severity is increased in 
CB1 knockout mice255, although one study has suggested 
that CB1 antagonists could be protective in transient or 
permanent cerebral artery occlusion256.

In mice with middle cerebral artery occlusion, CB2 
activation reduced infarct volume and improved neuro-
logical outcome and cerebral microcirculatory func-
tion257,258. Intriguingly, double knockout of CB1 and 
CB2 in mice improved recovery after stroke, suggest-
ing that unidentified compensatory mechanisms are 
activated259. Indeed, palmitoylethanolamide and other 
N- acetylethanolamines protected against transient focal 
cerebral ischaemia in rats and against the effects of mid-
dle cerebral artery occlusion in mice via mechanisms 
that did not require activation of CB1, CB2 or TRPV1, 
whereas OEA reduced infarct volume via PPARα in the 
latter model, and improved spatial cognitive deficits 
through enhancement of hippocampal neurogenesis in 
mice with transient focal cerebral ischaemia260–262.

Endocannabinoids. Several studies in rodent models  
of ischaemia after stroke have shown that brain levels of  
N- acetylethanolamines are elevated. This increase seems 
to be even greater after reperfusion256,263,264. Levels of 
2-AG in the brain are unaffected256. In agreement with 
these murine studies, palmitoylethanolamide levels are 
elevated in the blood of patients with acute stroke265.

Effects of phytocannabinoids. The neuroprotective effects 
of CBD after ischaemic stroke have been widely inves-
tigated. In the middle cerebral artery occlusion mouse 
model, CBD reduced infarct size, increased cerebral 
blood flow, improved motor behaviour and increased 
survival by acting at 5-HT1A receptors266. CBD also 
reduced ischaemic injury by upregulating the Na+–Ca2+ 
exchanger NCX2 and NCX3 proteins267 and protected 
against hypoxic–ischaemic damage in newborn rats and 
piglets268–271. After hypoxia–ischaemia in newborn pigs, 
CBD reduced brain oedema and seizures268 and brain 
damage was reversed after 72 h from treatment270. In the 
same model, CBD treatment reduced infarct volume 
and improved functional parameters271. In the forebrain 
from newborn mice that were deprived of oxygen and 
glucose, CBD had a neuroprotective effect that was 
partly mediated by adenosine 2A receptors269. Finally, 
CBD reduced brain damage and improved long- term 
functional recovery in a rat model of perinatal arterial  
ischaemic stroke272.

Clinical studies. Nabiximols is currently being tested as 
an add- on therapy for post- stroke spasticity273. Previously, 
palmitoylethanolamide with luteolin was tested in 
patients with stroke during rehabilitation and improved 
cognitive impairments, spasticity, pain and independence 
in daily living activities274.

Seizures and epilepsy
CB1 and CB2 receptors. Most preclinical models of acute 
seizure involve treatments that induce strong neuronal 
depolarization, such as kainic acid, pentylenetetrazole 
or electric shock (as in the maximal electroshock model, 
which produces tonic–clonic (grand mal) generalized 
seizures). Treatment with pilocarpine can induce true 
status epilepticus in rodents. In various models of tem-
poral lobe epilepsy, an agonist of CB1 and CB2 had anti- 
epileptogenic effects93,275,276 and CB1 and CB2 blockade 
had pro- epileptogenic effects277,278. However, the CB1 
antagonist SR141716A can have anti- epileptogenic 
effects, particularly in trauma- induced or febrile sei-
zures279–281. In the pentylenetetrazole and maximal electro-
shock models, activation of CB1 protected against acute 
seizures282–285; PPARγ activation had a synergistic effect 
in the pentylenetetrazole model284.

Endocannabinoids. Hippocampal concentrations of 
endocannabinoids are transiently increased after kainic 
acid injection in mice286. Levels of endocannabinoids, 
palmitoylethanolamide and OEA were altered in a brain- 
region-specific manner 1 h after kainic acid- induced 
seizures287. Although endocannabinoid levels in the 
hippocampus were unchanged in a rat model of fever- 
induced convulsions288, 2-AG was upregulated in a model 
of acute epilepsy induced by pilocarpine277. These data 
support the hypothesis that anandamide and 2-AG are 
released after neuronal hyperexcitability to counteract  
glutamate excitotoxicity during seizures286.

In several studies in preclinical models of acute sei-
zure, pharmacological elevation of endocannabinoid 
levels had anti- convulsant effects. FAAH inhibitors 
protected against seizures induced by pentylenetetrazole  
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or kainic acid289,290. Inhibitors of anandamide reuptake or  
hydrolysis had mixed effects on pentylenetetrazole- 
induced seizures — a CB1-dependent anti- convulsant 
effect was seen at lower doses of the inhibitors and a 
TRPV1-mediated pro- convulsant effect was seen at 
higher doses. This observation suggests that extra-
cellular accumulation of 2-AG or anandamide has 
anti- convulsive effects via the CB1 receptor, whereas 
intracellular anandamide accumulation is pro- convulsive 
via TRPV1 activation291,292. In the pentylenetetrazole 
model, inhibition of ABHD6 had an anticonvulsive 
effect via a GABAA receptor- mediated mechanism 
independent of CB1 and CB2 (ref.293), in agreement 
with the hypothesis that 2-AG directly activates GABAA 
receptors. In models of epileptogenesis caused by kin-
dled seizures, MAGL inhibitors had anticonvulsive and 
protective effects294, but high doses and long- term use of 
these inhibitors in pilocarpine- induced temporal lobe 
epilepsy in mice had epileptogenic effects295, possibly 
owing to CB1 desensitization.

In the pentylenetetrazole model, TRPV1 activation 
by N- oleoyl-dopamine was pro- convulsant296. By con-
trast, palmitoylethanolamide had anti- epileptic effects, 
but these were partially reversed by CB1 and CB2 antag-
onists297; these findings are in line with the idea that pal-
mitoylethanolamide also acts by increasing the effects of 
endocannabinoids at their receptors139.

Effects of phytocannabinoids. CBD had anti- convulsant 
effects in the pilocarpine model of temporal lobe epi-
lepsy, the penicillin model of partial seizure and the 
pentylenetetrazole model298,299, possibly via GPR55 
antagonism and TRPV1 desensitization5. It also rescued 
morphological anomalies in interneurons induced by 
epilepsy300. Cannabidivarin had anticonvulsant effects 
in several mouse and rat models of seizures, including 
the maximal electroshock model and audiogenic and 
pentylenetetrazole- induced seizures, but was inactive 
in the pilocarpine model301.

Clinical studies. In 2018, the FDA approved CBD for the 
treatment of seizures in Dravet syndrome and Lennox–
Gastaut syndrome on the basis of two successful 
double- blind, placebo- controlled phase III trials28,302 and 
previous open- label studies27. In patients with Dravet 
syndrome, CBD (20 mg/kg daily) decreased the median 
frequency of convulsive seizures from 12.4 per month to 
5.9 per month, compared with a decrease from 14.9 per 
month to 14.1 per month with placebo28. A 50% reduc-
tion in frequency of convulsive seizures was seen in 43% 
of patients who received CBD and 27% who received 
placebo28. In patients with Lennox–Gastaut syndrome, 
the efficacy of CBD was similar: the median reduction 
in drop seizure frequency was 41.9% in patients who 
received 20 mg/kg daily, 37.2% in patients who recei-
ved 10 mg/kg daily, and 17.2% in patients who received 
placebo. In both studies, some patients discontinued 
treatment owing to adverse events (including diarrhoea, 
decreased appetite and somnolence), but these were 
deemed less serious than with other anti- convulsant 
treatments302. In a prospective, open- label study pub-
lished in 2018, CBD as an add- on treatment reduced the 

frequency and severity of seizures and reduced adverse 
events in 72 children and 60 adults with treatment- 
resistant epilepsy303. Finally, in an expanded access 
programme, CBD has been tested for the treatment of 
seizures in patients with other rare disorders, including 
CDKL5 deficiency disorder, Aicardi syndrome, Dup15q 
syndrome, Doose syndrome, febrile infection- related 
epilepsy syndrome and other treatment- resistant pae-
diatric epilepsies. Reported efficacies and safety profiles 
were similar to those in the studies discussed above303–305. 
Several other clinical studies of CBD are ongoing and 
its interactions with other anti- convulsants are being 
investigated306.

Glioblastoma
CB1 and CB2 receptors. Glioblastoma is a rare, incur-
able brain tumour with an average survival time of 
<2 years from diagnosis. Studies of CB1 expression in 
glioblastoma have produced conflicting results307,308. By 
contrast, CB2 receptors are consistently upregulated in 
the brains of patients with glioblastoma and in human 
glioblastoma cells, and their expression positively 
correlates with tumour grade309. CB1 and CB2 ago-
nists decreased tumour size and increased survival by 
reducing angiogenesis in xenograft models with human 
glioma cells310–313. Moreover, CB2 activation induced 
differentiation and inhibited gliomagenesis of glioma- 
derived stem- like cells, which express all elements of the 
endocannabinoid system314.

Endocannabinoids. Elevated or reduced brain levels 
of anandamide and elevated levels of 2-AG have been 
reported in patients with glioma308. In various implant-
able or grafted tumour models, anandamide suppressed 
proliferation, adhesion, migration and invasion of 
temozolomide- resistant human U251 gliomablastoma 
cells315. A cocktail of anandamide, OEA and palmitoyl-
ethanolamide that is released by adult neural progenitor 
cells caused apoptosis of high- grade glioblastoma cells 
via activation of TRPV1 (ref.316). As further evidence for a 
protective role of TRPV1, the 5′-untranslated regions of 
human TRPV1 generate a stable transcript that encodes 
TRPV1v3, a variant of the channel that is very highly 
expressed in human glioblastoma tissue and stem- like 
cells and is associated with longer survival of patients317.

Effects of phytocannabinoids. CBD inhibits glioma 
cell proliferation and migration in vitro; these effects 
are independent of CB1 but at least partly mediated by 
CB2 (ref.318). THC had concentration- dependent effects 
on xenografts of temozolomide- resistant human glio-
blastoma T98G cells in mice — low doses stimulated 
proliferation and high doses inhibited proliferation319. 
Evidence suggests that a functional dimeric complex 
between GPR55 and CB2 could be responsible for these 
effects. CBD potentiated the anti- proliferative effect of 
THC, and administration of the two cannabinoids with 
temozolomide or radiation greatly increased glioma cell 
death320,321. Finally, CBD increased uptake of chemo-
therapeutic drugs and caused cytotoxicity in human  
glioma cells by activating TRPV2 (ref.322), and promo-
ted differentiation while reducing proliferation of  
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glioma-derived stem-like cells by upregulating acute 
myeloid leukaemia 1, a driver of tumour initiation that 
promotes TRPV2 expression323.

Clinical studies. A phase II clinical trial of nabiximols in  
glioblastoma has produced promising, although yet 
unpublished, results324. According to the manufacturer’s  
press release324, “the study showed that patients with doc-
umented recurrent glioblastoma treated with THC:CBD 
had an 83% 1 year survival rate compared with 53% for 
patients in the placebo cohort (P = 0.042). Median survival 
for the THC:CBD group was greater than 550 days com-
pared with 369 days in the placebo group”. A new clinical 
trial of the non- psychotropic, synthetic cannabinoid dex-
anabinol in glioblastoma has also been completed but the 
results are yet to be disclosed325.

Summary
The actions of endocannabinoids, endocannabinoid- 
like mediators and phytocannabinoids in several neuro-
logical disorders are multi- faceted, but some common 
threads can be identified (fig. 3). These compounds often 
counteract infiltration of peripheral immune cells to the 
CNS, an aetiopathological factor in most neurodegener-
ative diseases326. They also commonly shift the pheno-
types of microglia and infiltrating macrophages from 
pro- inflammatory to anti- inflammatory327, an effect 
often mediated by CB2, TRPV1 or PPARγ. When effec-
tive, CB1 agonists often reduce excitotoxicity. Studies 
of CB2 agonists and inhibitors of endocannabinoid 
inactivation are still at the preclinical stages, but major 
advances have been made in the clinical development of 
multi- target drugs that act within and beyond the endo-
cannabinoidome (Supplementary Table 2). In addition 
to the clinical studies mentioned above, several clinical 
trials of nabiximols and CBD are ongoing or recruiting.

Conclusions
Major efforts have been made to develop endo canna-
binoidome- targeted drugs. THC and its synthetic ana-
logue nabilone were ineffective in clinical trials against 
the primary symptoms of AD, PD and MS, although 
THC has proved effective in Tourette syndrome328. 
Clinical results with nabiximols, CBD and palmitoyl-
ethanolamide are more promising, possibly owing to 
their multi- target nature that means they address the 
redundancy and promiscuity in the expanded endo-
cannabinoid system. Notably, anecdotal and obser-
vational evidence on the use of cannabis preparations 
(including marijuana) in neurological disorders is 
increasing, but we have chosen not to discuss in this 
Review any controversial case reports or clinical studies 
with non- standardized preparations.

Controversy and, often unjustified, societal and regu-
latory barriers hinder development of cannabinoid- 
based treatments. A common misconception is that  
cannabinoids are all psychoactive, and pharmacolo-
gists have not been able to convey to the media and 
the layman that of >100 cannabinoids present in can-
nabis flowers, only THC is responsible for the central 
effects of marijuana. In addition, the fact that sev-
eral varieties of cannabis plants exist with different 

compositions of cannabinoids is neglected. CBD is 
still a controlled substance in the USA, even though 
it has been administered to hundreds of patients with 
no euphoric effects and a relatively safe profile. This 
anomaly makes clear that, despite considerable scien-
tific evidence, talks about legalization, and the many 
industrial and medical uses of the plant, stigma around 
cannabis still hinders the conclusive assessment of the 
therapeutic potential of the plant’s most abundant 
components. Further education is needed to reduce the 
negative impact of these factors on research. Emerging 
data on other non- euphoric cannabinoids (for exam-
ple, cannabidivarin and Δ9-tetrahydrocannabivarin) 
that are being tested in epilepsy329, some rare forms of 
autism330 and PD and metabolic disorders135 might help 
with this education.

Research into targeting the expanded endocan-
nabinoid system is in its infancy. The involvement of 
allosteric modulation in endocannabinoid signalling 
and the promiscuity of endocannabinoid- like media-
tors suggest that targeting non- orthosteric binding sites 
of CB1 and CB2 and/or development of multi- target 
compounds could be the best approach to develop-
ing neuroprotective drugs. Endogenous lipids, such 
as palmitoylethanolamide331, that act simultaneously 
at GPCRs, ion channels and PPARs139 can be taken as 
templates for the development of synthetic multi- target 
drugs that deal with the multi- factorial aetiology of 
most neurological disorders. For example, preclinical 
studies indicate that the neuroprotective actions of pal-
mitoylethanolamide involve modulation of at least three 
cell types139,264,332,333. Deeper knowledge of the allosteric 
sites on CB1 and CB2 (ref.62) is needed to enable their 
exploitation in the clinic.

In addition, more research is needed on the role of 
the gut microbiota in neuroinflammation and of endo-
cannabinoidome signalling in the regulation of the gut 
microbiome107,109,112,113,334. Modulation of the gut–brain 
axis by targeting gut endocannabinoidome receptors 
could offer new therapeutic opportunities. For example, 
evidence suggests that OEA and/or palmitoylethanol-
amide not only have central therapeutic effects but also 
reduce ‘leaky gut’-associated systemic inflammation and 
modulate gut microbiota composition335. Conversely, 
the intestinal flora produces neurotransmitters, such as 
serotonin and GABA110,336,337, and endocannabinoid-like 
molecules that act at the same receptors as the endo-
genous signalling molecules338. These mediators could 
affect the brain directly by diffusing through the BBB 
or indirectly via myenteric and vagal fibres. Levels of 
these molecules have not yet been measured in most  
neurological disorders associated with dysbiosis339.

Given that most studies of endocannabinoidome  
targeting have been preclinical, more neurologically rele-
vant animal models are needed to reduce the translation 
gap. In addition, further placebo-controlled and double- 
blind trials of endocannabinoidome-targeted therapies 
are needed to clarify whether the dream of develop-
ing new neurotherapies from cannabinoids and their  
endogenous counterparts can be fully realized.
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