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Abstract

Recent reports have shown that cannabinoid 1 receptors (CB1Rs) are expressed in pancre-

atic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin

receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apopto-

tic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6

and βTC6 cells with a synthetic CB1R agonist, WIN55,212–2, led to a decrease in the

expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and cas-

pase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade

of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β

cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated

by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for devel-

oping new therapeutic interventions to enhance β-cell function and growth in diabetes.

Introduction

The number of people diagnosed with diabetes worldwide has increased exponentially. How-

ever, it is currently not possible to directly treat the cause of diabetes. Type 1 diabetes (T1D)

results from β-cell destruction by an autoimmune reaction that leads to insulin deficiency, and

type 2 diabetes (T2D) is caused by insulin resistance and β-cell failure [1]. Therefore, insuffi-

cient insulin secretion due to β-cell loss is the common and major component in the pathogen-

esis of T1D and T2D, and decreased β-cell survival and growth are the primary mechanisms

for β-cell loss [1]. The β-cell mass, which is governed by balancing β-cell death and prolifera-

tion, plays an essential role in maintaining optimal glucose homeostasis by determining the

amount of insulin that is secreted into blood. Therefore, identifying the parameters that regu-

late β-cell death and proliferation and understanding their molecular mechanisms are
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especially important, and many molecules and signaling pathways have been identified.

Among them, cyclin D2 and Bcl-2 are essential molecules in the regulation of β-cell growth

and survival. Cyclin D2 is an essential regulator of β-cell expansion and stimulates cell cycle

progression from G1 to S phase. Additionally, cyclin D2-deficient mice showed reduced β-cell

growth and glucose intolerance [2–4]. The anti-apoptotic protein Bcl-2 is an essential molecule

in the regulation of β-cell death. An imbalance between pro-apoptotic and anti-apoptotic Bcl-2

family proteins causes β-cell death via the mitochondrial pathway, and overexpression of Bcl-2

protects β cells from cytokine- and lipotoxic stress-induced cell death [5–7].

Because insulin is a key hormone that regulates not only energy homeostasis but also β-cell

proliferation and death [8–10], many studies have focused on identifying factors that influence

the insulin signaling pathway. Our recent studies have shown that the cannabinoid 1 receptor

(CB1R), a G protein-coupled receptor that is activated by endogenous cannabinoids (ECs), is

present in pancreatic β cells, in which its activation directly inhibits insulin receptor kinase

activity by binding to the tyrosine kinase domain of the insulin receptor [11,12]. Activation of

CB1Rs by ECs and synthetic cannabinoids induce β-cell death and cell cycle arrest by inhibit-

ing insulin receptor signaling via IRS2-AKT-BAD and IRS2-AKT-p27, respectively [11,12].

Additionally, it has been reported that CB1Rs induce cell cycle arrest and death by inhibiting

the PI3K-AKT cascade in various types of cancer cells [13–15]. Furthermore, treatment of can-

cer cells with the synthetic cannabinoid WIN55,212–2 led to the dose-dependent down-regula-

tion of both cyclin D2 and Bcl-2 [15]. However, whether CB1Rs influence β-cell growth and

survival by regulating the levels of cyclin D2 and Bcl-2 remains unclear. Here, we demonstrate

that CB1R activation induces β-cell death and cell cycle arrest at G1 phase by decreasing Bcl-2

and cyclin D2 levels, respectively, both in vitro and in vivo.

Materials and Methods

Materials and Reagents

AM251(N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-

3-carboxamide),WIN55,212-2([(3R)-2,3-dihydro-5-methyl-3-(4 morpholinylmethyl)pyrrolo

[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone) and streptozotocin (STZ)

(2-deoxy-2-[[(methylnitrosoamino)carbonyl] amino]-D-glucose) were purchased from

Cayman Chemical. Rimonabant (biaryl pyrazole N-(piperidinyl)-5-(4-chlorophenyl)-1-

(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) was synthesized at Ajou Univer-

sity. Antibodies against caspase-3, cyclin D2, and Bcl-2 were purchased from Cell Signaling

Technology. An antibody against β-actin was purchased from Abcam. Antibody against Bax

was purchased from Santa Cruz. Anti-mouse and anti-rabbit secondary horseradish peroxidase

conjugate (HRP) was obtained from Bio-Rad Laboratories.

Cell Culture and Treatment

The mouse pancreatic β cell lines MIN6 and βTC6 were cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% heat-inactivated fetal bovine serum and 1% antibiotic

penicillin and streptomycin and were maintained under standard cell culture conditions at

37°C and 5% CO2 in a humid environment. Cells were treated with WIN55,212–2 at 0, 1, 2.5,

and 5 μM for 24 or 48 h in DMEM with 0.5% FBS with or without AM251.

Cell Viability Assay

Cell viability was determined by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphe-

nyl)-2-(4-sulphenyl)-2H- tetrazolium, inner salt) assay (Cell Titer 96 AQueous One Solution
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Cell Proliferation Assay; Promega). MIN6 and βTC6 cells were plated on 96-well plates and

allowed to adhere to the plates overnight. Cells were treated with WIN-55,212–2 (0, 1, 2.5,

5 μM) for 24 h, followed by incubation with MTS dye for 2 h. Absorbance was determined at

490 nm using iMark (Bio-Rad).

Western Blot Analysis

Whole cell lysates were prepared using modified radioimmune precipitation assay buffer (10

mM Tris-HCl, pH 7.4, 150 mMNaCl, 1% NonidetP-40, 1 mM EDTA, and 0.1% SDS), sepa-

rated by electrophoresis in SDS-containing polyacrylamide gels, and transferred onto PVDF

membranes (Millipore). Incubation with primary antibodies against caspase-3, cyclin D2, Bcl-

2, Bax, and β-actin was followed by incubations with the appropriate secondary antibodies con-

jugated with HRP.

Cell Cycle Analysis by Flow Cytometry

Cells were plated at a density of 1x106 cells on 6-well culture dishes. After an overnight incuba-

tion, cells were treated with WIN-55,212–2 (1.0, 2.5, 5.0 μM) for 48 h, washed twice with cold

phosphate-buffer saline (PBS), detached with 0.25% trypsin-EDTA, and pelleted. The pellet

was suspended in cold PBS, fixed in a final concentration of 70% ethanol for 1 h at 4°C, washed

with cold PBS, and incubated with 100 μg/ml RNase A for 15 min at room temperature. Nuclei

were stained with 50 μg/ml propidium iodide (PI; Sigma-Aldrich) for 30 min at 4°C in the

dark. Samples were analyzed by flow cytometry using a fluorescence activated cell sorter

(FACS). Results were analyzed using Mod-Fit LT software (Verity Software House, Topsham,

ME) to determine cell cycle distribution.

Animal Experiments

All animal experiments were carried out in compliance with the protocol specifically approved

for this study by the Ajou University Animal Care and Use Committee. CB1R−/−mice and

their wild-type littermates were developed and backcrossed into a C57Bl/6J background, as

previously described [16]. For regeneration experiments, low-dose (50 mg/kg) STZ was admin-

istered by daily i.p. injection into 2-month-old CD1 (Fig A in S1 File) or CB1R−/− and CB1R

+/+mice (n = 5 per group) for 5 days (Fig B in S1 File). DMSO or AM251 (10 mg/kg) was then

administered into CD1 mice by daily i.p injection without STZ. Three weeks after STZ with-

drawal, mice were euthanized with a lethal dose of isoflurane and pancreata were collected for

the metabolic and morphological analyses. DMSO or rimonabant (5 mg/kg) was administrated

by daily intraperitoneal (i.p.) injection into 6-week-old db/dbmice (n = 5 per group) for 4

weeks (Fig C in S1 File). Pancreata were rapidly dissected, fixed, and sectioned at a thickness of

7 μm. After antigen unmasking, the slides were blocked with 5% bovine serum albumin (BSA)/

PBS and incubated at 4°C with a specific primary antibody, followed by secondary antibodies

along with DAPI, in some cases, for nuclear staining. Slides were viewed with a Leica DMRBE

microscope equipped with a 400X objective lens. Signal intensity was assessed using ImageJ

software (http://rsb.info.nih.gov/ij/).

Statistical Analysis

Quantitative data are presented as the mean ± SEM. Differences between mean values were

compared statistically by Student’s t-test. Comparisons were performed using GraphPad Prism

(GraphPad Software) and Microsoft Excel 2010. A P value< 0.05 was considered statistically

significant.
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Results and Discussion

Activation of CB1R with WIN55,212–2 leads to decreased β cell survival

We first investigated the effects of the synthetic CB1R agonist WIN55,212–2 on pancreatic β-

cell viability. Treatment of mouse insulinoma MIN6 cells with WIN55,212–2 caused morpho-

logical changes characteristic of apoptosis, including cell rounding, in a dose-dependent man-

ner (Fig 1A). Additionally, the viability of MIN6 cells dose-dependently decreased with

WIN55,212–2 treatment (Fig 1B). Similar effects of WIN55,212–2 on morphological changes

(Fig 1C) and viability (Fig 1D) were observed in another mouse insulinoma cell line (βTC6).

The effects of WIN55,212–2 on viability were prevented by AM251, a selective CB1R antago-

nist (Fig 1E), suggesting that these effects are mediated by CB1Rs. We next examined whether

WIN55,212–2 regulates cell cycle progression in pancreatic β-cell lines. To analyze cell cycle

distribution, DNA content analysis was performed with PI staining and subsequent FACS anal-

ysis after treatment with WIN55,212–2. As shown in Fig 1F, treatment of βTC6 cells with

WIN55,212–2 led to an increase in the proportion of cells in G1 phase and a decrease in the

proportion of cells in S phase. These results indicate that activation of CB1R by WIN55,212–2

induces cell cycle arrest at G1 phase in pancreatic β cells.

WIN55,212–2 decreases Bcl-2 and cyclin D2 expression in pancreatic β
cells

Because cyclin D2 and Bcl-2 are pivotal molecules in the regulation of β-cell growth and sur-

vival [2–7], we next investigated the potential role of these molecules as a/the mediator of

WIN55,212-2-controlled β-cell growth and survival. Consistent with our previous results (Fig

1), WIN55,212–2 induced caspase-3 activation in βTC6 cells in a dose-dependent manner (Fig

2A). WIN55,212–2 caused a dose-dependent decrease in the levels of both cyclin D2 and Bcl-2

in βTC6 cells (Fig 2B). Similar effects of WIN55,212–2 on caspase-3 activation and cyclin D2

and Bcl-2 levels were also observed in MIN6 cells (data not shown). These results suggest that

WIN55,212-2-induced cell cycle arrest and cell death might be mediated by decreasing cyclin

D2 and Bcl-2 levels, respectively.

CB1R blockade in diabetic mouse models increases Bcl-2 and cyclin D2
levels in pancreatic β cells

Our previous report demonstrated that the pharmacological and genetic blockade of CB1Rs

has beneficial effects on β-cell growth and survival in mouse models of T1D [12]. Multiple

injections of low-dose STZ cause insulin-dependent diabetes and produce a progressive

increase in blood glucose levels due to selective β-cell destruction, and over time, the remaining

β cells attempt to survive and proliferate [17,18]. Compared with control mice, genetic deletion

and pharmacological blockade of CB1Rs in STZ-injected mice lead to decreased blood glucose

levels and increased β-cell growth and survival resulting from decreased levels of cyclin-depen-

dent kinase inhibitor p27 and active caspase-3 caused by enhanced insulin signaling via the

IRS2-AKT pathway [12]. Similar effects were also observed in AM251-injected normal and

db/dbmice [11]. Thus, using pancreata from those mice, we further examined whether the

increased β-cell survival and growth seen following CB1R blockade in these mice are associated

with any changes in the expression levels of Bcl-2 and cyclin D2. As shown in Fig 3A, daily

injection of AM251 for 3 weeks in normal mice led to significantly increased levels of Bcl-2 in

pancreatic β cells compared with DMSO-treated mice. Additionally, CB1R blockade by

AM251 in STZ-injected mice increased the amount of Bcl-2 in pancreatic β cells compared

with DMSO-treated mice (Fig 3B), and STZ-injected CB1R-null (CB1R-/-) mice also showed
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Fig 1. The synthetic CB1R agonist WIN55,212–2 leads to decreased cell viability and increased G1 arrest in pancreatic β-cell lines. (A)
Representative images of MIN6 cells exposed to WIN55,212–2. Scale bar, 50 μm. (B) The relative cell viability of MIN6 cells was determined by MTS assay
24 h after treatment with WIN55,212–2. Scale bar, 50 μm. (C) Representative images of βTC6 cells exposed to WIN55,212–2. (D) The relative cell viability of
βTC6 cells was determined by MTS assay 24 h after treatment with WIN55,212–2. (E) The relative cell viability of MIN6 cells exposed to WIN55,212–2 with
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enhanced levels of Bcl-2 in pancreatic β cells compared with STZ-injected CB1R+/+mice (Fig

3C). Similar to Bcl-2, the levels of cyclin D2 in pancreatic β cells of normal mice were also sig-

nificantly increased by AM251 (Fig 4A). Furthermore, CB1R blockade by AM251 in STZ-

injected mice also significantly increased cyclin D2 levels in pancreatic β cells (Fig 4B), and a

similar pattern was evident in pancreatic sections from STZ-injected CB1R-/-mice (Fig 4C).

The pharmacological blockade of CB1Rs in the T2D mouse model resulted in decreased

blood glucose levels as well as increased intra-islet insulin content and β-cell mass due to

enhanced β-cell proliferation [11]. Thus, we then investigated the expression levels of Bcl-2

and cyclin D2 in pancreatic β cells of db/dbmice. The Bcl-2 level was reduced in pancreatic

β cells of db/dbmice compared with normal mice (Fig 5A). Daily injection of another selective

or without a CB1R inverse agonist AM251. MIN6 cells were exposed to WIN55,212–2 with or without AM251 for 24 h, and relative cell viability was
determined by MTS assay. (F) WIN55,212–2 treatment in βTC6 cells increases the proportion of cells in G0/G1 phase. βTC6 cells exposed to WIN55,212–2
for 24 h were analyzed using a fluorescence activated cell sorter (FACS). Data are shown as the mean ± SEM from three independent experiments. *P<
0.05; **P< 0.01.

doi:10.1371/journal.pone.0150981.g001

Fig 2. Effects of WIN55,212–2 treatment on the expression of Bcl-2 and cyclin D2 in βTC6 cells. βTC6 cells exposed to WIN55,212–2 for 24 h were
subjected to western blot analysis for cleaved caspase-3 (A) or cyclin D2 and Bcl-2 (B). Relative densities for the indicated proteins are shown on the right.
Data are shown as the mean ± SEM from three independent experiments. *P< 0.05; **P< 0.01.

doi:10.1371/journal.pone.0150981.g002
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Fig 3. Blockade of CB1Rs in normal and STZ-treated mice increases Bcl-2 levels in β cells. (A) Representative images for insulin and Bcl-2 in β cells of
DMSO- and AM251-injected normal mice. The relative signal intensity for Bcl-2 in β cells is shown on the right. (B) Representative images for insulin and Bcl-
2 in β cells of DMSO- and AM251-injected mice after STZ treatment. The relative signal intensity for Bcl-2 in β cells is shown on the right. (C) Representative
images for insulin and Bcl-2 in β cells of CB1R+/+ andCB1R-/-mice 4 weeks after STZ treatment. The relative signal intensity for Bcl-2 in β cells is shown on
the right. Data are shown as the mean ± SEM from n = 3–5 animals per group. *P< 0.05; **P< 0.01. Scale bar, 50 μm.

doi:10.1371/journal.pone.0150981.g003
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Fig 4. Blockade of CB1Rs in normal and STZ-treated mice increases cyclin D2 levels in β cells. (A) Representative images for insulin and cyclin D2 in β

cells of DMSO- and AM251-injected normal mice. The relative signal intensity for cyclin D2 in β cells is shown on the right. (B) Representative images for
insulin and cyclin D2 in β cells of DMSO- and AM251-injected mice after STZ treatment. The relative signal intensity for cyclin D2 in β cells is shown on the
right. (C) Representative images for insulin and cyclin D2 in β cells of CB1R+/+ andCB1R-/-mice 4 weeks after STZ treatment. The relative signal intensity
for cyclin D2 in β cells is shown on the right. Data are shown as the mean ± SEM from n = 3–5 animals per group. *P< 0.05; **P< 0.01. Scale bar, 50 μm.

doi:10.1371/journal.pone.0150981.g004
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Fig 5. Blockade of CB1Rs in db/dbmice increases Bcl-2 and cyclin D2 levels in β cells. (A) Representative images for insulin and Bcl-2 in β cells of
normal and DMSO- or rimonabant-injected db/dbmice. The relative signal intensity for Bcl-2 in β cells is shown on the right. (B) Representative images for
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CB1R antagonist (rimonabant) for 4 weeks in db/dbmice led to significantly increased levels of

Bcl-2 in pancreatic β cells compared with DMSO-treated mice (Fig 5A). A similar pattern for

cyclin D2 was also observed in pancreatic β cells of rimonabant-injected db/dbmice (Fig 5B).

These results suggest that the effects of CB1R blockade on β-cell growth and survival are medi-

ated, at least in part, by enhanced Bcl-2 and cyclin D2 levels.

CB1Rs play critical roles in regulation of β-cell mass and function by influencing insulin recep-

tor signaling pathway [11,12,19]. Recent reports have shown that activation of CB1Rs by ECs and

synthetic cannabinoids inhibited insulin receptor signaling, resulting in reduced β-cell mass

[11,12]. The serine/threonine kinase AKT is the primary mediator of insulin receptor signaling

and many downstream targets of AKT have been identified that may underlie the ability of this

cascade to regulate β-mass. It has been well known that AKT directly phosphorylate several cru-

cial downstreammolecules that mediate cell survival and proliferation signals, such as pro-apo-

ptotic protein BAD, forkhead transcription factor FoxO1, and cyclin-dependent kinase inhibitor

p27, leading to the suppression of the cell death and growth arrest signals [20–24]. Consistently,

our previous studies have shown that activation of CB1Rs induces β-cell death and cell cycle

arrest by inhibiting AKT-mediated phosphorylation of BAD and p27, respectively [11,12]. Both

cyclin D2 and Bcl-2 are also crucial downstream targets of AKT that play essential roles in regula-

tion of β-cell mass [3–7,25,26]. Therefore, our data suggest that CB1Rs could regulate the expres-

sion of cyclin D2 and Bcl-2 by influencing insulin receptor signaling via IRS2-AKT cascade.

Conclusions

In the present report, we provide evidence for a molecular mechanism by which CB1Rs regu-

late β-cell growth and survival through influencing cyclin D2 and Bcl-2. We found that activa-

tion of CB1R leads to a decrease in the expression of cyclin D2 and Bcl-2, in turn inducing cell

cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis both in vitro and in vivo.

Taken together, these findings suggest involvement of Bcl-2 and cyclin D2 in the regulation of

β-cell survival and growth by CB1Rs. Further studies examining the direct relationship between

EC-induced β-cell death and Bcl-2 as well as EC-induced β-cell growth arrest and cyclin D2 are

warranted, which would contribute to identify the exact mechanism by which CB1Rs regulate

β-cell growth and survival.

Supporting Information

S1 File. Experimental timeline of the study.
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