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Abstract

The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of
type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal
subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells
(Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-
renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs,
an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed
by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of
CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by
counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium
concentrations ([Ca2+]i) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation
of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ
cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves
CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite
growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results
demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ
cell cultures.
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Introduction

In the adult brain, the SVZ is endowed with neural stem cells

that give rise to highly proliferating progenitor cells, able to

differentiate into neurons and glial cells [1,2]. In vivo, the

progenitors undergo cell death [3] or originate neuroblasts that

migrate tangentially along the rostral migratory stream (RMS)

towards the olfactory bulb [4] where they become functional and

integrate into pre-established brain circuits [5]. In addition, in a

different perspective, brain injuries, such as seizures, head traumas

and stroke, result in stimulation of neurogenesis, and this has been

proposed as an endogenous attempt to repair and reduce brain

damage [6]. In fact, newly generated cells migrate out of the SVZ

towards the damaged areas upon several brain injuries and

neurodegenerative diseases [7,8]. Therefore, these proliferative

and multipotent cells may represent a potential source of neurons

and glia for brain repair, through the recruitment from the

endogenous niches or through transplantation strategies [9,10].

Although the knowledge regarding neurogenesis is increasing,

the factors available at stem cell niches that may regulate cell

proliferation, differentiation, survival, maturation and integration

remain poorly understood. Deciphering the molecular mecha-

nisms controlling these events will contribute to the development

of new strategies to treat brain diseases.

There is an emerging consensus that endocannabinoid signaling

plays a major role in adult neurogenesis. Cannabinoids act on at

least two types of receptors, the type 1 and type 2 cannabinoid

receptors (CB1R and CB2R), which are, respectively, predomi-

nantly distributed in the central nervous system (CNS) and
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immune system, although some studies have described the

presence of low levels of CB2R in the brain [11,12]. In the brain,

CB1R are targeted by endogenous cannabinoids (or endocanna-

binoids) such as anandamide (AEA) and 2-arachidonylglycerol (2-

AG), which are molecules generated by the cleavage of plasma

membrane lipid precursors, a reaction tightly controlled by

neuronal activity [13]. Once generated, endocannabinoids act

retrogradely through presynaptic CB1R, blunting membrane

depolarization and inhibiting neurotransmitter release [13].

Collectively, CB1R agonists render neurons less excitable and

thus promote neuroprotection [14]. The endocannabinoid system

has been proposed to play important roles in many pathophys-

iological processes such as Parkinson’s disease, Alzheimer’s

disease, depression, inflammation, neuropathic pain and obesity

[15,16].

Several reports have demonstrated the modulation of neural

stem cell proliferation in culture and/or in adult mice via CB1R

and CB2R activation [17–23]. Additionally, in vivo studies showed

that excitotoxicity-induced hippocampal neural progenitors pro-

liferation and neurogenesis are abolished in CB1R-knockout (KO)

mice and in wild-type (WT) mice administered with a selective

CB1R antagonist [24]. Moreover, cannabinoid receptor activation

was found to promote migration of SVZ-derived neuroblasts [25].

Although recent data have highlighted the importance of

endocannabinoids in neurogenesis, available studies in the field

mostly addressed proliferation and did not analyse their influence

on stem cell properties and neuronal differentiation. Therefore, we

have dissected the effects of the agonist (R)-(+)-Methanandamide

(R-m-AEA) on stem cell dynamic, proliferation, cell death, and

progenitor’s neuronal differentiation in mouse SVZ cultures. Our

data clearly show that CB1R activation has a proneurogenic effect

on SVZ cells, suggesting that this pathway may be modulated in

order to activate neurogenesis in SVZ cells.

Materials and Methods

Ethics Statement
All experiments were performed in accordance with the

European Community (86/609/EEC; 2010/63/EU) guidelines

for the care and use of laboratory animals. The work was

performed with biological material obtained from mouse pups and

subsequently maintained in vitro. The study was approved by the

internal institutional ethic committee of the animal house (Biotério

FMUC; License nu520.000.000.2006, from the Portuguese animal

welfare authorities) after approval of the research project POCTI/

SAU-NEU 68465/2006. Sara Xapelli is a Competent Authorised

Person (Scientist- FELASA-CAT.C) for handling and conducting

laboratory animals in scientific research. The pups were handled

according to standard and humanitarian procedures to reduce

animal suffering. The animals were sacrificed by decapitation and

the brains immediately removed. Both WT C57BL6 and

transgenic mice expressing the green fluorescent protein

(C57BL/6-Tg(CAG-EGFP)1Osb/J, Jackson Laboratories, Maine,

USA) were used.

SVZ Cell Cultures
SVZ neurospheres were prepared from 1- to 3-day-old C57BL/

6 mice in serum-free medium (SFM) supplemented with 10 ng/ml

epidermal growth factor and 5 ng/ml fibroblast growth factor-2

(EGF and FGF-2; Invitrogen, Carlsbad, CA, USA), as described

previously [26] (see Supporting Information). In fact, these

conditions are optimal for the selection of stem/progenitor cells

from SVZ tissue [27–29]. Using this protocol, obtained neuro-

spheres are composed of undifferentiated cells expressing Sox2

and Nestin (Fig. S1). Six days after plating, the resulting SVZ

neurospheres were seeded onto glass coverslips coated with

0.1 mg/ml poly-D-lysine in SFM medium devoid of growth

Table 1. Primary antibodies used for immunocytochemistry.

Antigen Company Catalog number Host Clonality Dilution

CB1R Proteimax (Cotia, Brazil) PROTX07 rabbit polyclonal 1:200

Glial fibrillary acidic protein

(GFAP)

Cell Signaling Technology (Danvers, MA, USA) 3670 Mouse Monoclonal 1:500

Microtubule-associated

protein 2 (MAP2)

Sigma-Aldrich (St Louis, MO, USA) M4403 Mouse monoclonal 1:200

Doublecortin (DCX) Santa Cruz Antibodies, Santa Cruz, CA, USA) sc-8066 Goat polyclonal 1:200

Nestin Abcam (Cambridge, UK) ab6142 Mouse monoclonal 1:200

BrdU linked to IgG-labeled

Alexa fluor 594

Invitrogen (Invitrogen, Carlsbad, CA, USA) A21304 Mouse monoclonal 1:100

BrdU AbD serotec (Oxford, UK) OBT0030 Rat monoclonal 1:50

bIII tubulin Cell Signaling Technology 4466 Mouse monoclonal 1:500

Vesicular GABA Transporter

(VGAT)

Synaptic Systems (Goettingen, Germany) 131011 Mouse monoclonal 1:200

Neuronal Nuclei (NeuN) Millipore (Billerica, MA, USA) MAB377 Mouse monoclonal 1:100

anti-Tyrosine Hydroxylase

(TH)

Abcam (Cambridge, UK) AB112 Rabbit polyclonal 1:100

Olig2 Millipore AB9610 Rabbit polyclonal 1:200

Sox2 Santa Cruz Antibodies sc-17320 Goat polyclonal 1:600

Polysialylated neuronal

cell adhesion molecule

(PSA-NCAM)

Millipore MAB5324 Mouse monoclonal 1:200

doi:10.1371/journal.pone.0063529.t001

Type 1 Cannabinoid Receptors in SVZ Neurogenesis
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factors. Two days after plating, the medium was renewed with or

without (control) a range of concentrations for CB1R ligands.

Pharmacological Treatments
To investigate the effect of R-m-AEA [(R)-N-(2-Hydroxy-1-

methylethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] (CB1R agonist;

Tocris, Ellisville, MO, USA) on cell proliferation, neurospheres

plated as aforementioned were allowed to develop for 48 h in the

absence (control) or in the presence of R-m-AEA (100 nM,

300 nM or 1 mM) and 10 mM of 5-bromo-2-deoxyuridine (BrdU)

(Sigma-Aldrich, St Louis, MO, USA) was added for the last 4 h of

the culture session. To investigate the influence of R-m-AEA on

differentiation, neurospheres were allowed to develop for 7 days in

the absence (control) or in the presence of R-m-AEA (100 nM,

300 nM or 1 mM) and/or CB1R antagonist AM 251 [N-

(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-

1H-pyrazole-3-carboxamide] (1 mM, Tocris). Neuronal differenti-

ation of proliferating progenitors was assessed in SVZ cells

dissociated from neurospheres and plated at a density of 50000

cells/cm2 onto poly-D-lysine coated glass coverslips in SFM for

48 h. The cultures were incubated in the absence (control) or in

the presence of 1 mM R-mAEA together with 10 mM BrdU for

24 h. Then the cells were washed and incubated with only R-m-

AEA for more 6 days, fixed and stained for a marker of mature

neurons (neuronal nuclear protein, NeuN) and BrdU.

To study the influence of R-m-AEA on neuritogenesis, SVZ

neurospheres obtained from WT and GFP transgenic newborn

mice were dissociated (Neurocult dissociation kit, Stemcell

Technologies Inc., Grenoble, France) and plated onto poly-D-

lysine coated glass coverslips (95% WT and 5% GFP), in SFM

devoid of growth factors at a density of 50000 cells/cm2. With this

strategy we could differentiate high-density SVZ cells endowed

with isolated GFP-positive cells. The cells were allowed to develop

for 7 days in the absence (control) or in the presence of 1 mM R-

m-AEA, and were then fixed and stained for microtubule-

associated protein 2 (MAP2).

To access whether (R)-(+)-Methanandamide promotes trimethy-

lation of histone H3 lysine 36 (H3K36m3) on the promoter region

of Neurogenin1 (Ngn1), cells were incubated with 1 mM (R)-(+)-

Methanandamide for 6 h and 24 h, and then processed for

quantitative chromatin immunoprecipitation (qChIP) (see Meth-

ods S1). To confirm qChIP analysis, the levels of Ngn1 mRNA

were determined by quantitative real time polymerase chain

reaction (qRT-PCR) in SVZ cells treated or not (control) with

1 mM R-m-AEA for 3 days (see Methods S1).

Figure 1. SVZ cells express CB1R. A: Detection of CB1R by Western blotting in SVZ. Lane 1 corresponds to SVZ proliferating cells, lane 2 to SVZ
extract from adult C57Bl6 mice and lane 3 to the negative control (total proteins from CB1R-KO mice). B–F: Representative confocal digital images
depicting CB1R immunoreactivity in SVZ cells after 7 days of differentiation [CB1R (in red); nestin (in green), GFAP (in green), PSA-NCAM (in green),
DCX (in green), bIII tubulin (in green), MAP2 (in green) and Hoechst 33342 (used to visualize cell nuclei, in blue)]. c1, e1 and f1 are magnifications of
squares in C, E and F, respectively. Scale bars = 20 mm. SVZ: subventricular zone; GFAP: Glial fibrillary acidic protein; PSA-NCAM: Polysialylated neural
cell adhesion; bIII tubulin: Neuron-specific class III beta-tubulin; MAP2: Microtubule-associated protein 2; CB1R: CB1 receptor.
doi:10.1371/journal.pone.0063529.g001
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Figure 2. (R)-(+)-Methanandamide promotes self-renewal. A: Experimental protocol. B: Bar graphs represent the number of primary and
secondary neurospheres. Data are expressed as mean6 SEM. N= 6. *P,0.05, **P,0.01 and ***P,0.001 using Dunnett’s multiple comparison test, for
comparison with control; ###P,0.001 using Dunnett’s multiple comparison test, for comparison with R-m-AEA. C: Protocol used for studying cell-
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Self-renewal and Multipotency Assay
Self-renewal assays were performed on SVZ cells seeded at

clonal density, at 2500 cells per well in 24-well cell culture plates in

SFM containing 5 ng/ml EGF and 2.5 ng/ml FGF-2 (low EGF/

FGF-2) and supplemented or not (control) with 1 mM R-m-AEA

and/or 10 mM DAPT (a c-secretase inhibitor and therefore an

inhibitor of Notch pathway). After 6 days, the number of primary

neurospheres was determined. Then, neurospheres were collected,

dissociated as single cells (Neurocult dissociation kit) and seeded in

low EGF/FGF-2 medium as aforementioned. After 6 days, the

number of secondary neurospheres was counted. Then the

neurospheres were adhered to SuperFrost Plus glass slides

(Thermo Scientific, Menzel GmbH & Co KG, Braunscheweig,

Germany) by cytocentrifugation (3606g, 5 min; Cellspin I,

Tharmac GmbH, Waldsoms, Germany) and the neurospheres

were immunolabeled for Oligodendrocyte transcription factor 2

(Olig2), Glial fibrillary acidic protein (GFAP) and doublecortin

(DCX).

Cell-fate Studies: Sox2 Cell Pair Assay
Dissociated SVZ cell suspension obtained during the cell culture

procedure was plated on poly-D-lysine coated glass coverslips at a

density of 6400 cells/cm2. After seeding, SVZ cells were grown in

low EGF/FGF-2 containing medium supplemented or not

(control) with 1 mM R-m-AEA and/or 10 mM DAPT for 24 h.

Thereafter, cells were fixed in methanol for 15 min at 220uC and

then processed for immunocytochemistry against Sox2.

Immunocytochemistry
Cells were fixed for 30 minutes in 4% paraformaldehyde in

phosphate-buffered saline (PBS) or methanol, permeabilized and

blocked for non-specific binding sites for 1 h with 0.25% Triton

X-100 (Sigma-Aldrich) and 3% bovine serum albumin (BSA,

Sigma-Aldrich) dissolved in PBS. Cells were then subsequently

incubated overnight at 4uC with primary antibodies as listed in

Table 1 and for 1 h at RT with the appropriate secondary

antibodies as follows: donkey anti-mouse Alexa Fluor 594

antibody, anti-rabbit Alexa Fluor 488 or anti-goat Alexa Fluor

488 (all 1:200 and all from Invitrogen). Nuclei were visualized after

Hoechst 33342 incubation (6 mg/ml in PBS, Invitrogen). Finally,

the preparations were mounted using Dakocytomation fluorescent

medium (Dakocytomation, Carpinteria, CA, USA). Fluorescence

images were recorded using an Axioskop microscope (Carl Zeiss

Inc., Göttingen, Germany) and confocal images were recorded

using a Zeiss LSM 510 META confocal microscope (Carl Zeiss

Inc., Göttingen, Germany).

Cell Proliferation Studies
To investigate the effect of (R)-(+)-Methanandamide (R-m-AEA)

on cell proliferation, SVZ cells were exposed to 10 mM 5-bromo-

29-deoxyuridine (BrdU) (Sigma-Aldrich), a synthetic thymidine

analogue able to substitute thymidine in the DNA double chain

synthesis occurring in dividing cells, for the last 4 h of each R-m-

AEA (100 nM, 300 nM or 1 mM) treatment (48 h), as described

previously [30]. Then, SVZ cells were fixed in 4% PFA for 30 min

and rinsed with 0.15 M PBS at RT. Thereafter BrdU was

unmasked by permeabilizing cells in PBS 1% Triton X-100 at RT

for 30 min and DNA was denaturated in 1 M HCl for 40 min at

37uC. Following incubation in PBS with 0.5% Triton X-100 and

3% BSA to block nonspecific binding sites, cells were incubated

overnight with the anti-BrdU antibody (Table 1). After an

additional rinse in PBS, SVZ nuclei counterstaining and mounting

were performed as described previously.

Proliferation was also assessed using the Elisa BrdU colorimetric

assay (Roche, Basel, Switzerland). For that purpose, 40000 SVZ

cells obtained from dissociated primary neurospheres (Neurocult

dissociation kit) were plated per well of 96 well culture plates (4

wells per condition) and treated in the absence (control) or

presence of 1 mM R-m-AEA in SFM devoid of growth factors.

BrdU (10 mM) was added 4 h before the end of the 48 h lasting

culture session. Amount of BrdU incorporation was evaluated by

densitometry (at 450 nm) following the use of a peroxidase

conjugated anti-BrdU antibody and reaction with a peroxidase

substrate according to manufacturer’s instructions. As a positive

control, 10 ng/ml EGF together with 5 ng/ml FGF-2 was used.

Western Blotting Analysis
Western blotting analysis of CB1R, GFAP, Olig2 and phospho-

extracellular-signal-regulated kinase 1/2 (P-ERK1/2) was per-

formed from 6 day-old neurospheres that were plated into 6-well

plates previously coated with 0.1 mg/ml poly-D-lysine, and that

were allowed to adhere for 48 h in SFM before treatment or not

(control) with R-m-AEA (1 mM) for 15 min and 30 min (for P-

ERK) or 7 days (for CB1R, GFAP and Olig2). The cells were then

washed with 0.15 M PBS and harvested by scraping in lysis buffer

[0.15 M NaCl, 0.05 M Tris-base, 5 mM EGTA, 1% Triton X-

100, 0.5% Sodium deoxycholate (DOC), 0.1% SDS, 10 mM

dithiothreitol (DTT), containing a protease inhibitor cocktail tablet

(Roche), pH 7.4 at 4uC]. The supernatant was collected after

centrifugation at 14 000 rpm for 10 min, at 4uC. Protein

concentration was measured by the BCA method and samples

were treated with SDS-PAGE sample buffer [66 concentrated:

350 mM Tris, 10% (w/v) SDS, 30% (v/v) glycerol, 0.6 M DTT,

0.06% (w/v) bromophenol blue], boiled 5 min at 95uC, and stored

at 220uC until use for Western blotting analysis. Then, proteins

were separated by SDS-PAGE on 10% acrylamide/bisacrylamide

gels and transferred onto PVDF (polyvinylidine difluoride)

membranes with 0.45 mm pore size in the following conditions:

300 mA, 90 min at 4uC in a solution containing 10 mM CAPS

and 10% methanol, pH 11. Membranes were blocked and

incubated with the antibodies against CB1R (Proteimax, Cotia,

Brazil), GFAP (Cell Signaling Technology, Danvers, MA, USA),

Olig2 (Millipore, Billerica, MA, USA) or P-ERK1/2 (Cell

Signaling Technology). After washing, membranes were incubated

for 1 h at RT, with the respective alkaline phosphatase-linked

secondary antibodies. For endogenous control of immunolabeling,

PVDF membranes were reprobed with the antibodies against a-

Tubulin (Millipore) for CB1R, b-actin (Abcam, Cambridge, UK)

for GFAP and Olig2 and ERK1/2 (Cell Signaling Technology) for

P-ERK1/2. Then the membranes were incubated with the

alkaline phosphatase-linked secondary antibodies. Protein immu-

noreactive bands were visualized in a Versa-Doc Imaging System

fate. D: Confocal digital images of cell pairs obtained following (a) the symmetrical division of a SVZ cell into two Sox2+ cells (Sox2+/+), (b) the
asymmetrical division into a Sox2+ and a Sox2- progenitor (Sox2+/2) and (c) the symmetrical terminal division into two Sox2- progenitors (Sox22/2).
Scale bars 20 mm. E: Bar graph illustrates the number of each type of cell divisions counted. Data are expressed as the percentage of total cell pairs
and are represented as the mean 6 SEM. N= 5. *P,0.05 and ***P,0.001 using Bonferroni’s multiple comparison test, for comparison with the
respective controls; ###P,0.001 using Bonferroni’s multiple comparison test, for comparison with the respective R-m-AEA. SOX2: sex determining
region Y-box 2.
doi:10.1371/journal.pone.0063529.g002
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Figure 3. (R)-(+)-Methanandamide induces cell proliferation in SVZ cell cultures. A: Protocol used for studying cell proliferation. B: Bar
graph depicts the numbers of BrdU-positive cells expressed as percentage of the total number of cells. Data are expressed as mean 6 SEM. N=3–5.
**P,0.01 using Dunnett’s multiple comparison test, for comparison with control. C: Representative digital images of BrdU (red nuclei)-positive cells
and Hoechst 33342 staining (blue nuclei) in SVZ cultures. D: Amount of BrdU incorporation evaluated by densitometry (at 450 nm). N = 10. *P,0.05,
**P,0.01 and ***P,0.001 using Dunnnet’s multiple comparison test, for comparison with control; ##P,0.01 and ###P,0.001 using Dunnnet’s
multiple comparison test, for comparison with R-m-AEA; Scale bar = 50 mm.
doi:10.1371/journal.pone.0063529.g003
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(model 3000, BioRad Laboratories, CA), following incubation of

the membrane with ECF reagent (GE Healthcare, Buckingham-

shire, UK) for 5 min. Densitometric analyses were performed by

using the ImageQuant software (GE Healthcare Life Sciences).

Single Cell Calcium Imaging (SCCI)
To determine the functional differentiation pattern of SVZ cells,

the variations of [Ca2+]i in single cells following stimulation with

50 mM KCl (Merck; Darmstadt, Germany) and 100 mM hista-

mine (Sigma-Aldrich) were analyzed [31]. Histamine/KCl ratios

of peak values for Fura-2 were calculated to determine the extent

of neuronal differentiation in SVZ cultures (see Methods S1).

Statistical Analysis
Fluorescence digital images were recorded using an LSM

510 Meta confocal microscope or an Axioskop 2 Plus fluorescence

microscope (both from Carl Zeiss). In all experiments, measure-

ments were performed at the border of SVZ neurospheres where

migrating cells form a pseudo-monolayer of cells. For the self-

renewal assay, the experiments were replicated in six independent

culture preparations and each experimental condition was assayed

in four different wells. For the remaining experiments, each

condition was assayed in three different coverslips, and except

where otherwise specified, the experiments were replicated in

three independent culture preparations. For BrdU ELISA, each

experimental condition was reproduced in 4 different wells of a 96

well plate and experiments were assayed 4 times. Background

values obtained in the negative control wells were subtracted to all

values. Within each experiment, the mean of values of optical

density read at 450 nm in control wells were set to 100% and

optical densities of experimental conditions are expressed as

percentages of the Control condition. Number of neurospheres

that were immunoreactive for Olig2, Olig2/GFAP or Olig2/

GFAP/DCX was counted as a percentage of total neurospheres.

Percentages of Sox2 cell pairs were obtained from counting about

60 cell pairs in triplicate coverslips obtained from 3 independent

cultures. Percentages of BrdU, bIII tubulin/BrdU, NeuN/BrdU,

NeuN, VGAT, TH/bIII tubulin and GFP/MAP2 immunoreac-

tive cells were calculated from cell counts in five independent

microscopic fields in each coverslip with a 406 objective

(approximately 100 cells per field). Quantification of the number

of ramifications as well as total neurite length positive for MAP2

per MAP2/GFP cell was performed in 3 culture preparations in

approximately 20 non-overlapping fields per coverslip (406

magnification). Software used was Axiovision, release 4.6 (Carl

Zeiss).

For SCCI experiments, the percentage of neuronal-like

responding cells (with a Hist/KCl ratio below 0.8) was calculated

on the basis of one microscopic field per coverslip, containing

approximately 100 cells (406magnification), in a total of at least 3

independent cultures where each conditions are triplicate.

Figure 4. (R)-(+)-Methanandamide does not induce glial differentiation in SVZ cultures through CB1R activation. A: Protocol used for
studying glial differentiation. B:Western blot analysis of GFAP and Olig2 protein levels in SVZ. Data are expressed as mean6 SEM. N=4. C: Bar graph
depicts the number of GFAP and Olig2-positive cells, expressed as the percentage of total cells per culture. Data are expressed as mean6 SEM. N= 3.
D: Representative fluorescent digital images of GFAP-positive cells (green), Olig2-positive cells (red) and Hoechst staining (blue nuclei). Scale
bar = 50 mm.
doi:10.1371/journal.pone.0063529.g004

Type 1 Cannabinoid Receptors in SVZ Neurogenesis
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Data are expressed as means 6 standard error of the mean (SEM).

Statistical significance was determined by using the unpaired two-

tailed Student’s t test or one-way analysis of variance followed by

Bonferroni or Dunnett’s-multiple comparison test, with p,0.05

considered to represent statistical significance.

Results

SVZ Cells Express CB1R
The expression of CB1R protein in SVZ-derived cells was

confirmed by western blotting (Fig. 1A) and immunocytochemistry

(Fig. 1B–E). In fact, CB1R was detected in immature nestin-

positive SVZ cells adhered on poly-D-lysine coverslips (Fig. 1B)

and in GFAP-positive astrocytes indicating that its expression is

also maintained in astrocytes (Fig. 1C, c1). We have also observed

the expression of CB1R in Sox2-positive single cells dissociated

from the SVZ during the cell culture procedure (Fig. S2).

Moreover, CB1R expression was detected in the neuronal lineage

since it was observed in neurons expressing PSA-NCAM (Fig. 1D),

bIII tubulin (Fig. 1E, e1) and MAP2 (Fig. 1F, f1).

(R)-(+)-Methanandamide Promotes Self-renewal and
Multipotency of SVZ Cell Cultures
Neural stem-like cells are characterized in vitro by both their

capacity to give rise to neurospheres and to self-renew when

cultured in the presence of mitogens [28]. Exposure of freshly

dissected SVZ cells to 1 mM R-m-AEA during 6 days did not

affect the number of primary neurospheres generated as compared

to control untreated cultures (control: 10062.46%; R-m-AEA

1 mM: 99.6766.37%; Fig. 2A, B). However, the number of

primary neurospheres was decreased when the cells were co-

treated with R-m-AEA together with an inhibitor of the Notch

pathway (DAPT) (R-m-AEA 1 mM+DAPT 10 mM:

58.9764.04%; DAPT 10 mM: 56.5366.09%, N=3; P,0.001).

On the other hand, a higher number of secondary neurospheres

was generated from SVZ cells derived from R-m-AEA treated cells

in comparison with control SVZ cultures (control: 100.062.47%;

R-m-AEA 1 mM: 125.965.42%; N=9, P,0.01; Fig. 2B), thus

indicating that R-m-AEA priming promoted SVZ cells capacity to

self-renew. This effect is lost with co-priming with 10 mM DAPT

(R-m-AEA 1 mM+DAPT 10 mM: 70.84614.54%, N=3,

P,0.001), while the inhibitor by itself also blocked the self-

renewal capacity (DAPT 10 mM: 47.58615.83%). These data

Figure 5. (R)-(+)-Methanandamide induces neuronal differentiation in SVZ cultures through CB1R activation. A: Schematic
representation of the protocol. B: Bar graph depicts the number of neuronal-like responding cells expressed as percentages of total cells analyzed by
SCCI. N = 4–8. *P,0.05, ***P,0.01 using Dunnett’s multiple comparison test, for comparison with control. C: Representative SCCI profiles of response
of about 20 cells in control, in R-m-AEA and in R-m-AEA+AM 251 treated cultures. D: Representative fluorescent digital images of NeuN-positive
neurons (red) and Hoechst staining (blue nuclei). Scale bar = 50 mm. E: Bar graph depicts the number of NeuN-positive cells, expressed as the
percentage of total cells per culture. Data are expressed as mean 6 SEM. N=5 ***P,0.001 using Dunnett’s multiple comparison test, for comparison
with control. SCCI: single cell calcium imaging; NeuN: Neuronal Nuclei.
doi:10.1371/journal.pone.0063529.g005
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suggest that the notch pathway mediates CB1R induction of self-

renewal.

The capacity of R-m-AEA to promote self-renewal of SVZ cells

was further tested by plating SVZ cells for 24 h in medium

complemented with R-m-AEA or control medium. After the

culture session, cells were stained for Sox2, a marker of neural

stem cells with the ability to self-renew (Fig. 2C). Cell pairs

resulting from the division of a single SVZ stem/progenitor cell

were counted and categorized in 3 groups according to their Sox2

expression: in both daughter cells (Sox2+/+), in only one of the

daughter cell (Sox2+/2) and no expression (Sox22/2) (Fig. 2D).

R-m-AEA at 1 mM induced a significant increase in the

percentage of Sox2+/+ cell pairs (control: 24.1261.67%; R-m-

AEA: 33.6162.42%; N=6, P,0.05) with a concomitant decrease

of Sox22/2 cell pairs as compared with controls (control:

50.5962.34%; R-m-AEA: 43.6463.31%; N=5) (Fig. 2E). These

data suggest that R-m-AEA induced self-renewing divisions.

Moreover, we observed that DAPT blocked the increase in

Sox2+/+ cell pairs (R-m-AEA 1 mM+DAPT 10 mM:

15.2362.85%), while promoting Sox22/2 cell pairs (R-m-AEA

1 mM+DAPT 10 mM: 65.363.78%), further suggesting that

CB1R role in self-renewal is dependent of the notch pathway.

Moreover, we evaluated if R-m-AEA exposure altered the

multipotency of the formed neurospheres, by adhering secondary

free-floating neurospheres to glass slides and analysing the

expression of Olig2, GFAP and DCX which are markers of

oligodendrocyte progenitors, astrocytes and neurons, respectively.

We observed an increased number of tripotent neurospheres

expressing simultaneously Olig2, GFAP and DCX (Control:

78.6362.95%; R-m-AEA 1 mM: 87.6362.84%; P,0.01, Fig.

S3), whereas the number of bipotent neurospheres expressing

Olig2 and GFAP was significantly reduced (Control:

20.6761.89%; R-m-AEA 1 mM: 11.7162.66%; N=3, P,0.05,

Fig. S3).

(R)-(+)-Methanandamide Stimulates Cell Proliferation
To determine whether R-m-AEA modulates cell proliferation,

increasing concentrations of R-m-AEA (100 nM, 300 nM, 1 mM)

were applied on SVZ cells in SFM devoid of growth factors, for

48 h (Fig. 3A). BrdU, an analog of the thymidine nucleotide, was

added during the last 4 h of the culture to label cells that went

through S-phase. After fixation, incorporated BrdU was immu-

nolabeled and positive nuclei were counted. A significant increase

in the number of BrdU-immunopositive nuclei was obtained in

cultures incubated with 1 mM but not with 100 nM or 300 nM,

when compared with control (control: 4.9760.35%; R-m-AEA

1 mM: 6.8760.541%; R-m-AEA 100 nM: 6.0160.54%; R-m-

AEA 300 nM: 5.6560.44%; N=3–5, P,0.01) (Fig. 3B). More-

over, the effect caused by R-m-AEA was blocked by the presence

of the CB1R antagonist AM 251 [R-m-AEA+AM

251:4.660.44%)], further indicating that R-m-AEA effect on cell

proliferation is CB1R-mediated (Fig. 3B). Furthermore, the effect

of R-m-AEA or AM 251 on cell viability was evaluated after 48 h

of drug treatment. Apoptotic nuclei were stained by the TUNEL

(Terminal deoxynucleotidyl transferase dUTP nick end labeling)

method and no significant differences in the number of TUNEL-

positive nuclei were found, indicating that none of the drugs were

toxic to the cells (control: 11.3861.14%; R-m-AEA 100 nM:

Figure 6. (R)-(+)-Methanandamide promotes proliferation of neuroblasts. A, D: Experimental protocol. B, E: Representative confocal digital
images of BrdU (red), bIII tubulin (green) and Hoechst staining (blue) (B) and of BrdU (red), NeuN (green) and Hoechst staining (blue) (E). Scale
bar = 20 mm. C, F: Bar graphs depict the number of bIII tubulin/BrdU-positive cells expressed as percentage of total bIII tubulin positive cells (C) and
NeuN/BrdU-positive cells expressed as percentage of total NeuN-positive cells (F) per culture. Data are expressed as mean 6 SEM. N= 3. *P,0.05,
**P,0.01 using unpaired Student’s t test for comparison with control. bIII tubulin: Neuron-specific class III beta-tubulin; NeuN: Neuronal Nuclei.
doi:10.1371/journal.pone.0063529.g006
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13.1262.04%; R-m-AEA 300 nM: 10.9761.07%; R-m-AEA

1 mM: 13.0862.33%; AM 251 1 mM: 13.360.76%; as a control,

culture medium containing 0.20% Ethanol: 12.6760.71%; N=3,

data not shown).

ERK1/2 is a mitogen-activated protein kinase (MAPK) known

to mediate proliferation of neuronal progenitor cells [32].

Moreover, it has been shown that PI3K/AKT pathway is also

involved in SVZ cell proliferation [33–35]. To investigate whether

the increase in cell proliferation mediated by R-m-AEA treatment

is dependent on ERK and/or PI3K/AKT pathways, we evaluated

proliferation by quantifying BrdU incorporation with an ELISA

detection method and used selective inhibitors of the signaling

pathways.

The increase in proliferation mediated by R-m-AEA was

blocked when cells were co-incubated with 20 mM U0126 a

MAPK kinase 1/2 inhibitor (MEK1/2) or with 25 mM LY294002,

a PI3K inhibitor, together with R-m-AEA (Control:

100.0061.06%; 1 mM R-m-AEA: 111.563.66%; 1 mM R-m-

AEA +20 mM U0126:92.2565.09%; 1 mM R-m-AEA +25 mM

LY294002:68.7365.72%; N=10) (Fig. 3D). These results sug-

gested a pro-proliferative action of CB1R activation involving

MAPK/ERK and AKT signaling pathways.

To investigate whether R-m-AEA activates the ERK1/2

signaling pathway, SVZ cell cultures were exposed to 1 mM R-

m-AEA for 15 min and 30 min and cells were processed for

western blotting to detect phosphorylated activated form of

ERK1/2 (P-ERK1/2). We observed that P-ERK1/2 protein

levels increased to 138.4612.12% (N=5, P,0.05) in cultures

exposed for 15 min to R-m-AEA when comparing with control

condition (set to 100%) (Fig. S4).

(R)-(+)-Methanandamide Induces Neuronal
Differentiation via CB1R Activation
The effects of R-m-AEA on glial cell differentiation were

assessed by western blotting from SVZ cells treated with R-m-AEA

for 7 days. Quantification of GFAP and Olig2 protein levels was

performed and we found no effect of R-m-AEA treatment (GFAP:

control set at 100%, R-m-AEA 1 mM: 102.965.90%; Olig2:

control set at 100%, R-m-AEA 1 mM: 94.2864.57%, N=4),

indicating that R-m-AEA does not affect glial differentiation

(Fig. 4B). Moreover, we performed immunocytochemistry against

GFAP and Olig2 in SVZ cultures incubated for 7 days in the

absence (control) or presence of 1 mM R-m-AEA. No differences

in the numbers of astrocytes and oligodendrocytes were observed

between the conditions (GFAP, control: 20.3860.98%, R-m-AEA:

18.8360.81%; Olig-2, control: 8.2560.8%, R-m-AEA:

9.1560.69%; N=3) (Fig. 4C,D).

We next investigated whether R-m-AEA affected neuronal

differentiation. For that purpose, SVZ cells were treated with R-

m-AEA for 7 days (Fig. 5A). To functionally evaluate neuronal

differentiation in SVZ cultures, we used a method previously

described by us [26,31,36]. For that we analysed the variations of

[Ca2+]i at single cell level upon KCl and histamine (Hist)

stimulations, Hist/KCl ratios below 0.8 being characteristic of

SVZ-derived neuronal-like cells [31]. In control cultures we

observed a predominant immature-like profile, characterized by

an increase in [Ca2+]i in response to histamine but a small

response or no response to KCl stimulation (Fig. 5C). Interestingly,

the majority of R-m-AEA treated SVZ cells displayed an increase

in [Ca2+]i in response to KCl but not to histamine stimulation,

consistent with a neuronal-like profile (Fig. 5C). Quantification of

the percentage of cells displaying a Hist/KCl ratio below 0.8

showed that R-m-AEA is proneurogenic (Control: 12.1862.09%;

Figure 7. (R)-(+)-Methanandamide promotes the expression of the proneurogenic genes Ngn1. A: Scheme of the protocol. B: Bar graph
depicts the fold increase of H3K36m3 recruitment in the promoter region of Ngn1 gene quantified by qChIP analysis. C: Bar graph depicts the fold
increase of mRNA expression for Ngn1 protein evaluated by qRT-PCR analysis. Data are expressed as mean6 SEM. N=4–7. *P,0.05, using Dunnett’s
test for comparison with control (set to 1). H3K36m3: Histone H3 trimethylated on lysine 36; Ngn1: Neurogenin 1; qChIP: quantitative chromatin
immunoprecipitation; qRT-PCR: quantitative real time polymerase chain reaction.
doi:10.1371/journal.pone.0063529.g007
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R-m-AEA 100 nM: 26.5464.28%, P,0.05; R-m-AEA 300 nM:

34.5866.0%, P,0.001; R-m-AEA 1 mM: 41.5264.49%,

P,0.001; N= 4–8; Fig. 5B). Moreover, we observed that the

CB1R antagonist AM 251 (1 mM) was capable of blocking R-m-

AEA-induced neuronal differentiation [R-m-AEA 1 mM+AM 251

1 mM: 8.2964.27%; AM 251 1 mM: 13.8863.00%; N=4,

Fig. 5B)]. This method allowed us to quantify glial cells as these

cells do not respond to KCl nor to histamine and thereby display a

ratio of response close to 1 [31]. No differences were obtained

between the conditions (Fig. S5A) further attesting that CB1R

stimulation does not affect glial differentiation (ratio Hist/KCl

0.9–1) (Control: 38.3763.45%: R-m-AEA 100 nM:

35.9563.47%; R-m-AEA 300 nM: 29.6863.70%; R-m-AEA

1 mM: 30.7564.61%, N=8). Moreover, we also observed that

CB1R activation promoted a decrease in the % of immature-like

cells (ratio Hist/KCl 1–1.3) (Control: 26.2263.28%; R-m-AEA

100 nM: 10.5262.39%; R-m-AEA 300 nM: 11.8263.03%; R-m-

AEA 1 mM: 9.4961.50%, N=8) (Fig. S5B). Further supporting

the role of CB1R activation in neuronal differentiation, R-m-AEA

induced an increase in NeuN-positive cells when compared with

control cultures (Control: 5.3560.53%; R-m-AEA 1 mM:

11.3361.05%; N=4–5, P,0.001), and CB1R antagonist blocked

this effect (R-m-AEA 1 mM+AM 251 1 mM: 4.6660.73%)

(Fig. 5D, E), further suggesting that R-m-AEA promotes neuronal

differentiation. Additionally, we also found that the treatment with

R-m-AEA increased proliferation of neuronal progenitors, as

observed by the increase in bIII tubulin/BrdU-positive cells in

SVZ cultures treated with R-m-AEA for 48 h (Control:

6.0160.68%; 1 mM R-m-AEA: 9.8761.16%; N=3, P,0.05)

(Fig. 6A,B,C), without affecting the total number of bIII tubulin-

positive cells (Control: 27.061.39%; 1 mM R-m-AEA:

26.1562.01%; N=3, data not shown). Using a pulse of BrdU

together with R-m-AEA for the first 24 h of treatment followed by

a chase of 6 days (without BrdU) in the absence (control) or in the

presence of R-m-AEA (Fig. 6D) we observed an increase in the

number of NeuN/BrdU-positive cells in the treated condition as

compared to control, indicating that R-m-AEA may interfere in

the early stages of neuronal differentiation, committing progenitors

towards a neuronal fate (Control: 5.3160.99%; 1 mM R-m-AEA:

15.2462.43%; N=3, P,0.01) (Fig. 6 E, F).

To disclose if R-m-AEA has proneurogenic effects through

histone modifications associated with the transcription of the

proneurogenic gene Ngn1, we performed qChIP targeting the

trimethylated lysine 36 of the H3 histone (H3K36m3) followed by

Figure 8. (R)-(+)-Methanandamide induces the differentiation of GABAergic neurons and neuritogenesis. A: Schematic representation
of the protocol. B: Bar graph depicts the numbers of either VGAT- or TH/bIII tubulin-positive cells, expressed as percentage of total cells. The data are
expressed as percentage 6 SEM. N= 3. *P,0.05 using unpaired Student’s t test for comparison with control. C: Schematic representation of the
protocol used for studying neuritogenesis. D: Representative confocal digital images of the GFP (green), MAP2 (red), Hoechst staining (blue), in
control cultures and in cultures exposed to R-m-AEA. Scale bar = 20 mm. E: Bar graphs depict (from left to right): total length (mm), number of primary
and number of secondary ramifications of MAP2 neurites per cell. N = 3. **P,0.01 using unpaired student’s t test for comparison with control. MAP2:
Microtubule-associated protein 2; TH: tyrosine hydroxylase; bIII tubulin: Neuron-specific class III beta-tubulin; VGAT: vesicular GABA transporter.
doi:10.1371/journal.pone.0063529.g008
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a qPCR analysis (Fig. 7A). This specific histone methylation is

associated with transcription-active euchromatin [37], therefore

lineage potential can be studied by observing histone methylation

associated with the transcription of a proneurogenic gene. We

observed an early increased recruitment of H3K36m3 to the

regulatory elements of Ngn1 in SVZ cells exposed to 1 mM (R)-(+)-

Methanandamide, for 6 h (5.0063.06; control set to 1, N=3),

suggesting the enhancement of the transcriptional activity of Ngn1

(Fig. 7B). Using qRT-PCR analysis, we confirmed that 1 mM R-

m-AEA triggered a significant increase in Ngn1 mRNA levels

(2.7760.697 fold increase; N= 4, P,0.05) in SVZ cells treated for

3 days as compared with controls (set to 1) (Fig. 7C).

We then investigated whether 1 mM R-m-AEA influences the

phenotype of the neuronal cells produced in the cultures. For that

purpose immunolabelings for the vesicular GABA transporter

(VGAT) and the tyrosine hydroxylase (TH) were performed on

7 day-treated cultures since GABAergic and dopaminergic neu-

rons are the two major phenotypes of SVZ-derived neurons

(Fig. 8A). We observed an increase in VGAT-positive cells

(Control: 13.5762.29%; R-m-AEA: 20.5261.76%; N=3,

P,0.05), while, in the same experimental conditions, we did not

observed an increase in TH-positive cells (Control: 11.3461.38%;

R-m-AEA: 12.0461.55%) (Fig. 8B). Finally, consistently with the

observed proneurogenic action of endocannabinoids, we investi-

gated whether the R-m-AEA triggered the growth of neurites. For

that we exposed mixed cultures of WT and GFP mice for 7 days to

1 mM R-m-AEA and we evaluated the length and the number of

primary and secondary ramifications of MAP2 positive neurites

(Fig. 8C, D). Exposure of SVZ cells to R-m-AEA induced a

marked increase in the length of MAP2/GFP-positive neurites per

cell (Control: 29.062.14 mm; 1 mM R-m-AEA: 45.4163.96 mm;

N=3, P,0.01) (Fig. 8E). However, the number of primary and

secondary ramifications of MAP2/GFP-positive treated cells was

similar to control cultures (Fig. 8E).

Discussion

The role of endocannabinoids in the regulation of neurogenesis

has been the subject of several recent studies; however most of

these studies address the effects of endocannabinoids on hippo-

campal neurogenesis with emphasis on proliferation. Here we

examined the effects of endocannabinoids on SVZ-derived cells,

given that SVZ represents the main stem cell reservoir in the

rodent adult brain. These cells may be used for cell replacement

therapies if efficient proneurogenic compounds are identified. In

our study, we disclosed the modulatory effects of endocannabi-

noids on SVZ proliferation, cell fate decision, survival and

differentiation.

Firstly, we observed by western blotting that CB1R is expressed

in SVZ cell cultures. CB1R is indeed expressed in immature

nestin-positive cells (marker of stem-like cells in vitro), in astrocytes

(GFAP-positive cells) and in immature neurons (PSA-NCAM- and

DCX-positive cells). Others have shown that neural progenitor

cells express CB1R, in fact CB1R was found to be expressed in vivo

in the SVZ and DG and in nestin-positive cells from neural

progenitor cultures [17,20,21,38].

We have also found that R-m-AEA promotes self-renewal and

multipotency of SVZ cell cultures, as observed by an increase in

the total number of secondary neurospheres that were also

tripotent (Olig2/GFAP/DCX). Moreover, CB1R agonist treat-

ment induced self-renewing divisions, resulting in an increased

number of Sox2+/+ pairs of daughter cells. Accordingly, these

data indicate that CB1R activation promotes stemness in SVZ

cells. To our knowledge, this is the first time that such a property

for CB1R activation is directly demonstrated, although it was

already suggested that CB1R activation might be important to

maintain self-renewal of embryonic cortical neural stem cells

cultures in proliferation conditions [39]. Recently, Compagnucci

and collaborators [40] have shown by gene array profiling that in

embryonic mice cortical neural stem cells under differentiation

conditions (no growth factor, 1% serum and upon adherence),

CB1R activation increases the expression of genes involved in

neuronal differentiation while it decreased the genes involved in

stemness. However, we herein studied the role of CB1R in stemnes

in the postnatal neural stem cells under proliferation conditions. In

concordance with their results the number of immature cells in our

cultures, evaluated according to their response to histamine but

not to KCl [31], decreased with R-m-AEA treatment under

differentiation conditions. In addition, we observed that inhibiting

the Notch pathway with DAPT blocked the increase in self-

renewal induced by R-m-AEA treatment, suggesting that the

notch pathway mediates CB1R induction of self-renewal. In fact,

Tanveer and collaborators [41] have shown that anandamide,

increases Notch-1 signaling in cortical neurons exposed to

amyloid-beta and in the cortex of aged rats.

Moreover, we observed an increase in the number of BrdU-

positive cells in cultures treated with R-m-AEA, and this effect was

blocked by a CB1R selective antagonist, further showing that R-

m-AEA effect is CB1R-mediated. In fact, there is an emerging

consensus that endocannabinoid signaling plays a major role in

proliferation. In this context, reduction in neural stem cell

proliferation was seen in both the hippocampus and SVZ in

CB1R-KO animals [21,22,38] and in diacylglycerol lipase

(DAGL, the enzyme that synthesize 2-AG, one of the main

endocannabinoids in the CNS)-KO mice [18]. Accordingly,

knocking-out or inhibiting the enzyme fatty acid amide hydrolase

(FAAH, an enzyme involved in the breakdown of endocannabi-

noids), promotes the increase in proliferation [17,38]. Further-

more, several data also suggest that CB1R activation induces

proliferation [17,20,24]. However, other reports also suggest that

CB2R are expressed by neural stem cells, and that CB2R-selective

agonists and antagonists modulate the generation of cultured

neural stem cell and precursor cell proliferation [19,42–44]. We

found that incubation of SVZ stem/progenitor cell cultures with

R-m-AEA together with U0126 (an inhibitor of ERK pathway) or

with LY294002 (an inhibitor of PI3K pathway) promotes a

decrease in BrdU incorporation, when comparing with CB1R

agonist treatment alone, demonstrating that these pathways (ERK

and PI3K) play pivotal roles in the CB1R-dependent modulation

of proliferation.

In fact, others have already shown that ERK and PI3K

pathways are important regulators of CB1R-mediated prolifera-

tion [13,20,45]. Most of the studies claiming that CB1R activation

promotes neurogenesis addressed their role in proliferation rather

than in cell differentiation. Therefore, we studied the effect of R-

m-AEA treatment, in differentiation conditions, on glial and

neuronal differentiation. We observed that CB1R activation did

not induce differentiation of GFAP-positive astrocytes or Olig2-

positive oligodendrocytes. However, previous published results are

apparently discordant because some authors have shown that

endocannabinoid treatment promotes astroglial and/or oligoden-

droglial differentiation [38,41,46,47] while others have shown that

CB1R activation promotes neuronal differentiation [40,48]. Our

results are in accordance with an effect mediated by CB1R

activation on neuronal differentiation. In fact, we found that R-m-

AEA induces functional neuronal differentiation in SVZ cell

cultures via CB1R activation and these results were further

supported by an increase in the number of NeuN-positive cells.
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We also found that treatment with R-m-AEA increased prolifer-

ation of neuronal progenitors (bIII tubulin/BrdU-positive cells) in

48h treated cultures. Interestingly, the total number of bIII

tubulin-positive cells was similar between the control and R-m-

AEA treated condition, for 48 h. However after 7 days of

treatment, the proportion of NeuN-positive cells was increased.

R-m-AEA may increase neuronal differentiation via promoting

proliferation of neuronal precursor cells, but also by accelerating

neuronal maturation. Indeed, more progenitor cells labeled with

BrdU, for the first 24 h of the culture session, ultimately

differentiated into NeuN-positive mature neurons following 7 days

of treatment with R-m-AEA. Moreover, we showed that

GABAergic differentiation is favored by R-m-AEA treatment.

Soltys and collaborators have also observed an increase in

neuronal differentiation of neural progenitor cells by anadamide

treatment [48]. However, Rueda and collaborators [49] showed

that endocannabinoids and the CB1R agonist HU210 inhibited

neuronal progenitor cell differentiation through a reduction of the

ERK pathway activation in cultured embryonic cortical cells,

human neural stem/progenitor cells and PC12 cells stably

transfected with human CB1R. In addition, endocannabinoid

signaling has been shown to promote astroglial differentiation of

cortical neural progenitor cells and of adult hippocampal

progenitors [38]. The divergent effects shown in the bibliography

concerning the role of endocannabinoids on neurogenesis may

partly rely on the use of different pharmacologic approaches. In

fact, the cannabinoids may have different affinity for CB1R,

CB2R, and also Transient Receptor Potential Vanilloid receptor 1

(TRPV1) [50], which may account for the observed differences.

Moreover, these discrepancies can also be explained by differences

in the study design, compounds used and gender of the animals

[22]. Besides, the readout parameters for adult neurogenesis vary

between studies with some reports focusing only on the effects of

CB1R on proliferation [20,21].

Emerging information indicates that epigenetic alterations

comprising histone modifications and chromatin remodeling

may be inherent to the maintenance and differentiation of neural

stem cells. However, their involvement has not yet been

completely understood. Recent studies indicate that lineage

control genes, such as Ngn1, are epigenetically modified with a

unique combination of histone modifications that prime them for

potential activation upon cell lineage induction and differentiation

[51]. Here we investigated whether R-m-AEA could promote

H3K36m3 modification in the promoter region of Ngn1, since this

is considered to be a proneurogenic gene [52]. Accordingly, upon

R-m-AEA treatment, we observed an increase of H3K36m3 on

Ngn1 promoter region, which ultimately lead to an increased

mRNA expression of this proneurogenic gene. Importantly, recent

reports have shown that Ngn1 is able to commit pluripotent

embryonic carcinoma P19 cells to adopt a neural cell phenotype

[53,54]. Moreover, we have recently shown that histamine

promotes neurogenesis and that this proneurogenic effect involves

epigenetic modifications and increased expression of Mash1, Dlx2,

and Ngn1 genes [55].

The differentiation process in neurons is a complex phenom-

enon involving multiple changes in electrophysiological charac-

teristics as well as changes in morphology characterized by neurite

(dendritic and axonal) outgrowths. Regulation of neurite out-

growth is tightly controlled and many neurotransmitters are

involved in this process [56]. Therefore, we studied neuritogenesis

and we observed that primary ramification length was significantly

higher in R-m-AEA-treated cultures, showing that CB1R

promotes neuronal maturation. Also, Jordan and collaborators

have shown that CB1R activation induces neurite outgrowth in

Neuro-2A cells [56]. Moreover, recent findings in both mammals

[57] and non-mammalian vertebrates [58] suggest that CB1R

activation is required for axonal elongation and fasciculation. In

addition, Mulder and collaborators [59] have shown that CB1R

activation drives neural progenitors proliferation and migration

and that in immature pyramidal cells, CB1R activation is required

for axonal polarization and for the formation of long-range

glutamatergic axons. More recently, it was shown that CB1R

activation promotes neuronal maturation from embryonic neural

stem cells in differentiation conditions [40].

Taken together, our results further dissect the role of CB1R on

SVZ neurogenesis and demonstrate that its activation promotes

self-renewal, proliferation, neuronal differentiation and matura-

tion.

Supporting Information

Figure S1 Neurospheres are composed by stem/pro-

genitor cells. Representative confocal digital image depicting

Sox2 and Nestin immunoreactivity in a SVZ neurosphere [Sox2

(in red), nestin (in green) Hoechst 33342 (used to visualize cell

nuclei, in blue)]. Scale bar = 20 mm

(TIF)

Figure S2 CB1R is expressed in stem/progenitor cells.

Representative confocal digital image depicting Sox2 and CB1R

immunoreactivity in SVZ cells plated for 24h after culture

procedure. Scale bar = 20 mm

(TIF)

Figure S3 (R)-(+)-Methanandamide promotes multipo-

tency. Bar graphs depict the number of secondary neurospheres

expressing either Olig2, Olig2/GFAP or Olig2/GFAP/DCX.

Numbers are expressed as percentage of total spheres counted.

N= 3. *P,0.05 and **P,0.01 using Bonferroni’s multiple

comparison test, for comparison with the respective controls.

Olig2: Oligodendrocyte transcription factor 2; GFAP: Glial

fibrillary acidic protein; DCX: Doublecortin.

(TIF)

Figure S4 (R)-(+)-Methanandamide activates ERK path-

way. Graph depicts the percentages relative to control of P-

ERK1/2 protein levels normalized to total ERK1/2 in SVZ

cultures. Below the graph, a representative Western blot for 44/

42 kDa P-ERK and ERK is shown. N= 5. *P,0.05 using

Bonferroni’s multiple comparison test for comparison with the

respective controls

(TIF)

Figure S5 (R)-(+)-Methanandamide does not induce

glial differentiation in SVZ cultures through CB1R

activation. A: Bar graph depicts the number of glial-like (A)

and immature-like (B) responding cells expressed as percentages of

total cells analyzed by SCCI. N=8. **P,0.01 and ***P,0.01

using Dunnett’s multiple comparison test, for comparison with

control.

(TIF)

Methods S1 Detailed description of methods for: a) SVZ

cell cultures; b) single-cell calcium imaging (SCCI); c)

quantitative chromatin immunoprecipitation (qChIP);

d) cDNA synthesis and realtime RT-PCR analysis

(Ngn1).

(DOC)
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