• 719-347-5400
  • info@realmofcaring.org
  • 719-347-5400
  • info@realmofcaring.org
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
  • Donate
  • Register
  • Login
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
Menu
  • Research
    • Observational Research Registry
    • Company Interest
    • Research Library
  • Resources
    • Client Portal
      • Dosing & Administration
      • Client Education Series
      • Client F.A.Q.
        • Client Additional Questions
      • For Pets
      • Glossary
      • Observational Research Registry
      • Printable Resources
      • Supported Brands
    • Healthcare Portal
      • Dosing & Administration
      • Join Our List of Healthcare Professionals
      • Practitioner Education
    • Find a Provider
      • Locate a Healthcare Professional
      • MMJ Recommendations
  • Blog
    • Blog: Client Stories
    • Blog: Education
  • About
    • Who We Are
    • In the News
    • Supported Brands
    • Our Supporters
    • Financials
  • Contact Us
  • Donate
  • Register
  • Login
  • autoimmunity, Cannabinoid receptor, experimental autoimmune encephalomyelitis, multiple sclerosis
Loading...

Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor

The cannabinoid system is now recognized as a regulator of both the nervous and immune systems. Although marijuana has been used for centuries for the treatment of a variety of disorders, its therapeutic mechanisms are only now being understood. The best-studied plant cannabinoid, D9 -tetrahydrocannabinol (THC), produced by Cannabis sativa and found in marijuana, has shown evidence of being immunosuppressive in both in vivo and in vitro. Since THC binds to at least two receptors that are differentially expressed by the immune and nervous systems, it has not been possible to clearly discriminate the biological effects it exerts in the two systems. In addition,...
Read More

An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity

2-Arachidonoyl-glycerol 2-Ara-Gl has been isolated from various tissues and identified as an endogenous ligand for both cannabinoid receptors, CB and CB . Here we report that in spleen, as in brain and gut, 2-Ara-Gl is accompanied by several 1 2 2-acyl-glycerol esters, two major ones being 2-linoleoyl-glycerol 2-Lino-Gl and 2-palmitoyl-glycerol 2-Palm-Gl . These two esters do not bind to the cannabinoid receptors, nor do they inhibit adenylyl cyclase via either CB or CB ; however, they significantly potentiate 1 2 the apparent binding of 2-Ara-Gl and its apparent capacity to inhibit adenylyl cyclase. Together these esters also significantly potentiate 2-Ara-Gl inhibition of motor behavior,...
Read More

Cannabinoids and the immune system

The effect of cannabimimetic agents on the function of immune cells such as T and B lymphocytes, natural killer cells and macrophages has been extensively studied over the past several decades using human and animal paradigms involving whole animal models as well as tissue culture systems. From this work, it can be concluded that these drugs have subtle yet complex effects on immune cell function and that some of the drug activity is mediated by cannabinoid receptors expressed on the various immune cell subtypes. However, the overall role of the cannabinoid system of receptors and ligands in human health and disease is still unclear...
Read More

Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor

The cannabinoid system is now recognized as a regulator of both the nervous and immune systems. Although marijuana has been used for centuries for the treatment of a variety of disorders, its therapeutic mechanisms are only now being understood. The best-studied plant cannabinoid, D9 -tetrahydrocannabinol (THC), produced by Cannabis sativa and found in marijuana, has shown evidence of being immunosuppressive in both in vivo and in vitro. Since THC binds to at least two receptors that are differentially expressed by the immune and nervous systems, it has not been possible to clearly discriminate the biological effects it exerts in the two systems. In addition,...
Read More

Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone

Cnr2 is one of two cannabinoid receptors known to regulate bone metabolism. Here, we compared the whole bone properties of femora and tibiae from three-month-old Cnr2−/− mice with wild-type controls using a C57BL/6 background. Bending stiffness was measured by three-point bending. The elastic modulus, density and mineral content were measured using ultrasound, Archimedes’ principle and ashing. Micro-CT was used to measure the second moment of area, inner and outer perimeters of the cortical shaft and trabecular parameters. Deleting Cnr2 increased the bending stiffness by increasing the second moment of area. Bone from affected male mice had a greater modulus than controls, although no difference...
Read More

Intrahippocampal administration of anandamide increases REM sleep

A nascent literature has postulated endocannabinoids (eCBs) as strong sleep-inducing lipids, particularly rapid-eye-movement sleep (REMs), nevertheless the exact mechanisms behind this effect remain to be determined. Anandamide and 2-arachidonyl glycerol, two of the most important eCBS, are synthesized in the hippocampus. This structure also expresses a high concentration of cannabinoid receptor 1 (CB1). Recent extensive literature supports eCBs as important regulators of hippocampal activity. It has also been shown that these molecules vary their expression on the hippocampus depending on the light–dark cycle. In this context we decided to analyze the effect of intrahippocampal administration of the eCB anandamide (ANA) on the sleep–waking cycle...
Read More

Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain

Cannabis is the most commonly used illicit substance among pregnant women. Human epidemiological and animal studies have found that prenatal cannabis exposure influences brain development and can have long-lasting impacts on cognitive functions. Exploration of the therapeutic potential of cannabis-based medicines and synthetic cannabinoid compounds has given us much insight into the physiological roles of endogenous ligands (endocannabinoids) and their receptors. In this article, we examine human longitudinal cohort studies that document the longterm influence of prenatal exposure to cannabis, followed by an overview of the molecular composition of the endocannabinoid system and the temporal and spatial changes in their expression during brain development....
Read More

Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes

Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions...
Read More

The Nonpsychoactive Cannabis Constituent Cannabidiol Is a Wake-Inducing Agent

Cannabidiol (CBD) is a constituent of Cannabis sativa that induces nonpsychotropic effects, and some of its biological actions in sleep have been described by the authors’ group. Here, the authors report that when administered 10 or 20 g/1 l during the lights-on period directly into either lateral hypothalamus (LH) or dorsal raphe nuclei (DRN), which are wake-inducing brain areas, CBD enhanced wakefulness and decreased slow wave sleep and REM sleep. Furthermore, CBD increased alpha and theta power spectra but diminished delta power spectra. Additionally, CBD increased c-Fos expression in LH or DRN. These findings suggest that this cannabinoid is a wake-inducing compound that presumably...
Read More

REGISTER WITH THE RoC TODAY!

Realm of Caring focuses on research, education, building community, and improving quality of life. We are an educational resource for consumers, physicians, scientists, governments and the media.
Register now
  • 5040 Corporate Plaza Drive, Suite 7R, Colorado Springs, CO 80919
  • 719-347-5400
  • info@realmofcaring.org

Copyright © 2022 / Realm of Caring Foundation, Inc

  • Privacy
  • Disclaimer